Michigan State University AgBioResearch

In Cooperation With Michigan Potato Industry Commission

Michigan Potato Research Report Volume 53 **2021** January 12, 2022

To all Michigan Potato Growers and Shippers,

The Michigan Potato Industry Commission continues to provide over \$169,000 in direct funding on an annual basis for potato research. This research is the one of the core components that continue to move the Michigan potato industry forward. Expanding research has provided increased insights into varieties, disease, soil fertility, and storage management. Research outcomes continue to provide a competitive advantage for the industry in Michigan and to provide Michigan with a highly respected reputation among the national industry professionals.

The following research report was compiled with the help of the Michigan State University AgBioResearch and Michigan State University Extension. On behalf of all parties, we are proud to present you with the results of the 2021 potato research projects.

We hope that each of you see value in the investment made in these projects and can apply some of the results directly to strengthen your own operation.

We would like to thank our many suppliers, researchers, and industry partners who are involved in making this year's research season a success even in the midst of a global pandemic. As the industry faces new challenges and strives to improve upon best practices, we are inspired by the level of cooperation within the industry and look forward to future success together.

Sincerely,

Kelly Jurner

Dr. Kelly Turner, Ed. D, CAE Executive Director

Table of Contents

	Page
Introduction and Acknowledgements	1
2021 Potato Breeding and Genetics Research Report D.S. Douches, J. Coombs, K. Zarka, G. Steere, M. Zuehlke, D. Zarka, K. Shaw, W. Behling	5
2021 Potato Variety Evaluations D.S. Douches, J. Coombs, K. Zarka, G. Steerer, M. Zuehlke, K. Shaw, C. Long, J. Willbur, W. Behling	23
2021 On-Farm Potato Variety Trials C. Long, T. VanAtta, D. Kurzer, I. Smith, R. Vindischman, D.S. Douches, J. DeDecker	56
Evaluating New Potato Varieties for Herbicide Sensitivity E. Burns	101
Layering Soil Residual Herbicides for Troublesome Weed Control in Potatoes E. Burns	105
Evaluation of Foliar Fungicide Timing to Manage White Mold of Potato in Michigan, 2020 and 2021 C. Bloomingdale, J.F. Willbur, J. DeDecker	109
Utilizing Envita Microbial Inoculant to Fix Nitrogen and Reduce Fertilizer Application K. Steinke, A. Chomas	111
Polyhalite as a Source of Polysulfate Fertilizer in Potato Production K. Steinke, A. Chomas	113
Management of <i>Verticillium dahliae</i> using bio-fungicides M. Quintanilla, H. Chung	115
Assessment of SaniDate 5.0 Application and Varietal Resistance for Potato Postharvest Disease Management in Michigan, 2022 E. Schlachter, C. Dmytryszyn, C. Bloomingdale, D. Kurzer, T. VanAtta, D. Douches, R. Hammerschmidt, C. Long, J.F. Willbur	119

Diagnostic Optimization of Viral Detection and Characterization for the Michigan Seed Potato Certification Program, 2021	121
M. Satoh-Cruz, S. Rhodes, J. Axford, E. Dorman, J. Willbur	
Improvement of Disease Management in Irrigated Potato Fields Using Real-Time Sensor Monitoring Systems Y. Dong, J. Willbur, J. Check	123
2020-2021 Michigan Potato Demonstration Storage Annual Report	130
Introduction C. Long, T. VanAtta, and D. Kurzer	130
New Chip Processing Variety Box Bin Report C. Long, K. VanAtta, D. Kurzer, and B. Sackett	135
Bulk Bin (500 cwt. Bin) Report C. Long, K. VanAtta, D. Kurzer, and B. Sackett	147
2020-2021 Michigan Russet Potato Storage Report C. Long, K. VanAtta, D. Kurzer	180

2021 MICHIGAN POTATO RESEARCH REPORT

C. M. Long, Coordinator

INTRODUCTION AND ACKNOWLEDGMENTS

The 2021 Potato Research Report contains reports of the many potato research projects conducted by Michigan State University (MSU) potato researchers at several locations. The 2021 report is the 53rd volume, which has been prepared annually since 1969. This volume includes research projects funded by the Potato Special Federal Grant, the Michigan Potato Industry Commission (MPIC), Project GREEEN and numerous other sources. The principal source of funding for each project has been noted in each report.

We wish to acknowledge the excellent cooperation of the Michigan potato industry and the MPIC for their continued support of the MSU potato research program. We also want to acknowledge the significant impact that the funds from the Potato Special Federal Grant have had on the scope and magnitude of potato related research in Michigan.

Many other contributions to MSU potato research have been made in the form of fertilizers, pesticides, seed, supplies and monetary grants. We also recognize the tremendous cooperation of individual producers who participate in the numerous on-farm projects. It is this dedicated support and cooperation that makes for a productive research program for the betterment of the Michigan potato industry.

We further acknowledge the professionalism of the MPIC Research Committee. The Michigan potato industry should be proud of the dedication of this committee and the keen interest they take in determining the needs and direction of Michigan's potato research.

Special thanks goes to Mathew Klein for his management of the MSU Montcalm Research Center (MRC) and the many details which are a part of its operation. We also want to recognize Trina VanAtta, MSU for organizing and compiling this final draft.

WEATHER

The overall 6-month average maximum and minimum temperatures during the 2021 growing season were consistent with the 15-year averages at 73°F and 50°F respectively (Table 1). May had slightly cooler temperatures than both the minimum and maximum average. Conversely, June, August, and September were warmer than average. Daytime extreme heat events were lower than average in 2021 with no days or hours in which temperatures exceeded 90°F during the summer. Extreme high nighttime temperatures were higher than average in 2021, with 237 hours of nighttime temperatures above 70°F over 45 days, compared to the seven-year average of 183 hours over 38 days (Table 3).

Rainfall for April through September was 21.49 inches, which was 3.55 inches above the 15-year average (Table 2). A total of 9.15 inches of irrigation water over 15 application timings was applied to MRC 4 between late May and late August. In general, April and May were drier than average while June, July, and September had more precipitation than average.

	Ap	oril	М	ay	Ju	ne	Ju	ly	Aug	gust	Septe	ember	Average	
Year	Max.	Min.	Max.	Min.	Max.	Min.								
2007	53	33	73	47	82	54	81	56	80	58	76	50	74	50
2008	61	33	67	40	77	56	80	58	80	54	73	50	73	49
2009	56	33	67	45	76	54	75	53	76	56	74	49	71	48
2010	64	33	70	49	77	57	83	62	82	61	69	50	74	52
2011	53	33	68	48	77	56	85	62	79	58	70	48	72	51
2012	58	33	73	48	84	53	90	62	82	55	74	46	77	50
2013	51	33	73	48	77	55	81	58	80	54	73	48	73	49
2014	55	33	68	45	78	57	77	54	79	56	72	47	73	49
2015	58	33	71	48	76	54	80	56	77	57	77	54	72	49
2016	53	32	70	45	78	53	82	60	85	60	78	54	73	51
2017	61	39	67	44	78	55	81	58	77	54	77	50	74	50
2018	55	33	81	46	84	58	88	64	84	63	76	52	78	53
2019	55	35	65	45	75	54	84	69	80	55	73	54	72	52
2020	56	29	76	35	77	54	81	68	78	60	70	48	73	49
2021	58	35	69	41	80	58	81	58	85	59	76	50	75	50
15-Year														
Average	56	33	71	45	78	55	82	60	80	57	74	50	73	50

Table 1. The 15-year summary of average maximum and minimum temperatures (°F) during the growing season at the Montcalm Research Center.*

 Table 2. The 15-year summary of precipitation (inches per month) recorded during the growing season at the Montcalm Research Center*

Year	April	May	June	July	August	September	Total
2007	2.64	1.60	1.58	2.43	2.34	1.18	11.77
2008	1.59	1.69	2.95	3.07	3.03	5.03	17.36
2009	3.94	2.15	2.43	2.07	4.74	1.49	16.82
2010	1.59	3.68	3.21	2.14	2.63	1.88	15.13
2011	3.42	3.08	2.38	1.63	2.57	1.84	14.92
2012	2.35	0.98	0.99	3.63	3.31	0.76	12.02
2013	7.98	4.52	2.26	1.35	4.06	1.33	21.50
2014	4.24	5.51	3.25	3.71	1.78	2.35	20.84
2015	3.71	2.96	4.79	1.72	2.42	3.90	19.50
2016	2.25	2.77	1.33	3.42	5.35	3.05	18.17
2017	4.45	1.98	6.37	0.92	1.36	0.70	15.78
2018	2.04	5.51	3.64	1.19	7.73	2.65	22.76
2019	2.64	5.46	2.90	2.04	3.31	5.72	22.07
2020	3.49	4.75	1.40	4.07	2.21	3.12	19.04
2021	1.71	2.18	5.58	4.79	3.52	3.71	21.49
15-Year							
Average	3.20	3.25	3.00	2.55	3.36	2.58	17.94

			Night (10pm-8am)						
	Temperatu	$res > 90^{\circ}F$	Temperatures $> 70^{\circ}$ F						
Year	Hours	Days	Hours	Days					
2015	0	0	114	31					
2016	26	7	248	50					
2017	11	3	123	29					
2018	26	8	214	46					
2019	5	2	174	31					
2020	15	5	171	36					
2021	0	0	237	45					
Average	12	4	183	38					

Table 3. Seven-year heat stress summary (from May 1st – Sept. 30th)*

GROWING DEGREE DAYS

Table 4 summarizes the cumulative growing degree days (GDD) for 2021 while providing historical data from 2009-2020. GDD are presented from May 1^{st} – September 30^{th} using the Baskerville-Emin method with a base temperature of 40° F. The total GDD base 40 at the end of September in 2021 was 3956 (Table 4), which is 151 GDD higher than the 13-year average of 3805.

Year	May	June	July	August	September
2009	519	1264	2004	2800	3420
2010	610	1411	2424	3402	3979
2011	567	1354	2388	3270	3848
2012	652	1177	2280	3153	3762
2013	637	1421	2334	3179	3798
2014	522	1340	2120	2977	3552
2015	604	1353	2230	3051	3789
2016	547	1318	2263	3274	4053
2017	480	1279	2202	2990	3695
2018	689	1487	2423	3373	4073
2019	457	1189	2179	3024	3731
2020	488	1298	2331	3241	3809
2021	494	1362	2276	3269	3956
Average	559	1327	2266	3154	3805

Table 4. Growing Degree Days* - Base 40°F.

*2007-2021 data from the weather station at MSU Montcalm Research Center "Enviro-weather", Michigan Weather Station Network, Entrican, MI.

PREVIOUS CROPS, TILLAGE AND FERTILIZERS

The general potato research area utilized in 2021 was Montcalm Research Center property in the field referred to as 'MRC 4.' This acreage was planted to rye in the spring of 2020 with crop residue disked into the soil in fall and sprayed off in the spring of 2021. In the spring of 2021, the recommended rate of potash was broadcast applied following deep-chisel plowing. The ground was vertical tilled and direct planted to potatoes. The area was not fumigated with Vapam prior to potato planting, but Admire Pro[®] was applied in-furrow at planting.

The soil test analysis for the general crop area (taken in November 2021) was as follows:

		lbs	s/A	
<u>pH</u>	<u>P</u>	<u>K</u>	<u>Ca</u>	<u>Mg</u>
6.3	300	226	1164	190
	(150 ppm)	(113 ppm)	(582 ppm)	(95 ppm)

The fertilizers used in the general plot area are as follows (fertilizer variations used for specific research projects are included in the individual project reports).

Application	Analysis	Rate	Nutrients (N-P ₂ O ₅ -K ₂ O-Ca/Mg/S/Zn)
Broadcast at plow down	0-0-22-11Mg-22S	200 lbs/A	0-0-44-22Mg-44S
	0-0-0-21Ca-16S	150 lbs/A	0-0-0-32Ca-24S
	0-0-0-21Ca-12Mg	300 lbs/A	0-0-0-63Ca-36Mg
	10%B	6 lbs/A	0.6 lb. B
	0-0-62	350 lbs/A	0-0-217
	0-0-0-9Zn	1 qt/A	0.3 lb. Zn
At-planting	28-0-0	24 gpa	72-0-0
	10-34-0	12 gpa	14-49-0
At-cultivation	28-0-0	24 gpa	72-0-0
	10-34-0	12 gpa	14-49-0
At-hilling	46-0-0	120 lbs/A	55-0-0
Late side dress (late varieties)	46-0-0	100 lbs/A	46-0-0

HERBICIDES AND PEST CONTROL

A pre-emergence application of Linex4l/Dual at 1.25 qts/A and Brawl II at 1.0 pts/A was made in late May and early June. Admire Pro® was applied in-furrow at planting at a rate of 8.7 fl oz/A.

Echo 720 (24 oz/A), Manzate (2 lbs/A), Bravo (20 oz/A), and Pencozeb (2 lbs/A) fungicides were applied alone or in combination on twelve dates between June and early September.

Blackhawk (3.3 oz/A), Coragen (6 oz/A), Mustang Maxx (3 oz/A), Asana XL (9 oz/A), and Exirel (13.5 oz/A) insecticides were applied alone or in combination on five dates between June and August.

Potato vines were desiccated with Reglone in late August and early September at a rate of 32 oz/A.

2021 MSU POTATO BREEDING AND GENETICS RESEARCH REPORT January 2022

David S. Douches, J. Coombs, K. Zarka, G. Steere, M. Zuehlke, D. Zarka, K. Shaw, and W. Behling

Department of Plant, Soil and Microbial Sciences Michigan State University East Lansing, MI 48824

Cooperators: Robin Buell, Ray Hammerschmidt, Jaime Willbur and Chris Long

INTRODUCTION

At Michigan State University, we have been dedicated to developing improved potato varieties for the chip-processing and tablestock markets since 1988. The program is one of four integrated breeding programs in the North Central region supported through the USDA/NIFA Potato Special Grant. At MSU, we conduct a comprehensive multi-disciplinary program for potato breeding and variety development that incorporates plant pathology, entomology, biotechnology and genomics to meet Michigan's needs. Our program integrates traditional and biotechnological approaches to breed for disease and insect resistance that is positioned to respond to scientific and technology opportunities that emerge. We are also developing and applying more efficient methods to breed improved potato varieties at the tetraploid and diploid level.

In Michigan, the primary market requires that we focus on developing high yielding round white potatoes with excellent chip-processing from the field and/or storage. In addition, there is also a need for table varieties (russet, red, yellow, and round white). We conduct variety trials of advanced selections and field experiments at MSU research locations (Montcalm Research Center, Lake City Research Center, Clarksville Research Center, and MSU Agronomy Farm), we ship seed to other states and Canadian provinces for variety trials, and we cooperate with Chris Long on grower trials throughout Michigan. This testing is crucial in determining the commercial potential of the lines. Through conventional crosses in the greenhouse, we develop new genetic combinations in the breeding program, and also screen and identify exotic germplasm that will enhance the varietal breeding efforts. With each cycle of crossing and selection we are seeing directed improvement towards improved varieties (e.g. combining chip-processing, scab resistance, PVY resistance, late blight resistance and higher specific gravity). We continue to see the increase in scab, late blight and PVY resistance in the breeding material and selections. We need to continue to combine these traits in long-term storage chip-processing lines. It has been 12 years since we started the SolCAP project and we are benefiting from the SolCAP SNP array DNA marker technology as we can now query 35,000 SNPs (compared to 8,303 SNPs in initial array). This SolCAP translational genomics project has finally giving us the opportunity to link genetic markers to important traits (reducing sugars, starch, scab resistance, etc.) in the cultivated potato lines and then breed them into elite germplasm. The SNPs also allow us to accurately fingerprint the varieties (DNA

fingerprinting database with 4,000 entries). In addition, our program has been utilizing genetic engineering as a tool to introduce new genes to improve varieties and advanced germplasm for traits such as insect resistance, late blight and PVY resistance, lower reducing sugar and drought. In 2022, we plan to test potatoes with late blight resistance, drought tolerance, invertase silencing and gene editing for PPO and self-compatibility. Furthermore, PotatoesUSA is supporting national early generation trials called the National Chip Processing Trial (NCPT) which will feed lines into the SNAC (SFA) trials and also Fast Track lines into commercial testing (NexGen testing). This national cooperative testing is the key! The PotatoesUSA Fast Track program invests in largerscale seed increase for early generation promising chip-processing lines for commercial scale evaluation by growers and processors. This has led to the release of Saginaw Chipper (MSR061-1), Manistee (MSL292-A), Huron Chipper (MSW485-2), Mackinaw (MSX540-4), and Petoskey (MSV030-4). The next clones for commercialization are MSZ242-13 and MSW474-1. In the table markets, Blackberry and MSV093-1Y (Bonafide) are showing promise. We also have funding to develop genome editing technologies that may not be classified as regulated through a USDA/BRAG grant. This technology can be used to introduce lower sugars, bruising and asparagine as well a number of other traits in the future. We also have a USDA/AFRI diploid breeding grant to develop some foundational diploid breeding germplasm (Potato 2.0). In 2015, we were awarded the USAID grant to generate late blight resistance potatoes for Bangladesh and Indonesia. This Feed the Future project brings us into cutting edge GM work with Simplot and the International Potato Center (CIP). This project has been extended another 5 years and expanded to Kenya and Nigeria. Lastly, we have NSF-funded grants to better understand the potato genome and study wound-healing in potato. We feel that these in-house capacities (both conventional and biotechnological) put us in a unique position to respond to and focus on the most promising directions for variety development and effectively integrate advanced technologies with the breeding of improved chipprocessing and tablestock potatoes.

The breeding goals at MSU are based on current and future needs of the Michigan potato industry. Traits of importance include yield potential, disease resistance (scab, late blight, early die, and PVY), insect (Colorado potato beetle) resistance, chipping (out-of-the-field, storage, and extended cold storage) and cooking quality, bruise resistance, storability, along with shape, internal quality, and appearance. If these goals can be met, we will be able to reduce production input costs, keep potato production profitable as well as reduce the reliance on chemical inputs such as insecticides, fungicides and sprout inhibitors, and improve overall agronomic performance through new potato varieties.

Over the years, key infrastructure changes have been established for the breeding program to make sound assessments of the breeding selections moving through the program. In 2016, we constructed a greenhouse to expand our breeding and certified minituber seed production. This greenhouse is located at the MSU Agronomy Farm facility on south campus. Also in 2016, we began to upgrade the potato washing and grading line. which was completed with funding from MPIC and AgBioResearch. Variable speed control drives, a new lift; custom built barrel washer; grading table; and Kerian speed sizer are all part of the set up as of 2019. Incorporation of bar-coding and scales synchronized to computer hot keys, have improved the speed, accuracy and

efficiency of the grading process. All entities of the potato group: Potato Breeding and Genetics; Potato Outreach Program; pathologists and soil fertility researchers have access to this new equipment.

Varietal Development Breeding

The MSU potato breeding and genetics program is actively producing new germplasm and advanced seedlings that are improved for long-term storage chipping, and resistance to scab, late blight, and Colorado potato beetle. For the 2021 field season, progeny from about 300 crosses were planted and evaluated. Of those, the majority were crosses to select for round whites (chip-processing and tablestock), with the remainder to select for yellow flesh, long/russet types, red skin, and specialty market classes. During the 2021 harvest, about 1,000 selections were made from the 40,000 seedlings produced. Most of these first-year selections are segregating for PVY resistance. All second, third or fourthyear potential chip-processing selections will be tested in January and April 2022 directly out of 45°F (7.2°C) storage. Atlantic, Lamoka and Snowden are chip-processed as check cultivars. Selections have been identified at each stage of the selection cycle that have desirable agronomic characteristics and chip-processing potential. At the 12-hill and 30-hill evaluation state, about 300 and 100 selections were made, respectively; based on chip quality, specific gravity, scab resistance, late blight resistance and DNA markers for PVY and Golden nematode resistance. The majority of our selections now have PVY resistance. Selection in the early generation stages has been enhanced by the incorporation of the scab and late blight (US-23) evaluations of the early generation material. We are pushing our early generation selections from the 30-hill stage into tissue culture to minimize PVY issues in our breeding and seed stock. We are now using a cryotherapy method as well as the traditional methods that was developed in our lab to remove viruses. This technique predictably and quickly removes virus from tissue culture stocks. Our results show that we are able to remove both PVY and PVS from lines, but PVS can still be difficult to remove in certain lines if the titer is high. We tested the removal of PLRV and succeeded. Over 1500 different varieties and breeding lines are maintained in tissue culture for the breeding and genetics program.

Chip-Processing

Over 75% of the single hill selections have a chip-processing parent in their pedigree. We prioritize scab resistance and PVY resistance in our chip-processing selections. Our most promising advanced chip-processing lines are Mackinaw (MSX540-4) (scab, late blight and PVY resistant), Petoskey (MSV030-4) (scab resistant), Huron Chipper (MSW485-2) (late blight resistant), MSZ242-13 (scab resistant), MSW474-1 (scab resistant) and MSZ614-15 (scab, late blight and PVY resistant). We have some newer lines to consider such as MSAA217-3, MSBB230-1 and MSBB058-1. With a successful late blight trial, we are able to confirm resistance in some of our advanced selections. We are using the NCPT trials to more effectively identify promising new selections. Manistee and Mackinaw were licensed to Canada. Saginaw Chipper and Mackinaw are in Australia and South Korea.

Tablestock

Efforts have been made to identify lines with good appearance with an attractive skin finish, low internal defects, good cooking quality, high marketable yield and resistance to scab, late blight and PVY. Our current tablestock development goals now are to continue to improve the frequency of scab and PVY resistant lines, incorporate resistance to late blight along with marketable maturity and excellent tuber quality, and select more redskinned and yellow-fleshed lines. We have also been selecting some pigmented skin and tuber flesh lines that fit some specialty markets. There is also interest in some additional specialty mini-potatoes for the "Tasteful Selections" market. We have interest from some western specialty potato growers to test and commercial these lines. From our breeding efforts we have identified mostly round white lines, but we also have a number of yellowfleshed and red-skinned lines, as well as some purple skin selections that carry many of the characteristics mentioned above. PVY resistance is incorporated into these different table market classes. Some of the tablestock lines were tested in on-farm trials in 2021, while others were tested under replicated conditions at the Montcalm Research Center. Promising tablestock lines include MSV093-1Y that we are naming Bonafide (yellow, scab resistant), MST252-1Y (scab resistant), MSV179-1 (scab resistant), MSZ416-8RY (scab resistant) is being licensed by Pro-Health and MSX324-2R (scab resistant). MSZ109-8PP and MSZ109-10PP (Blackberry) are purple-fleshed chippers with deep purple flesh, round shape and attractive skin as well as scab resistance. We are working with Chris Long to select a new cohort of red-skinned and yellow-fleshed potato lines. Jacqueline Lee (late blight resistant) was licensed to Australia and is being grown in Central America for its late blight resistance. Raspberry, Blackberry, MSQ558-2RR (Ruby Rose) and our PVY resistant Red Marker #2 potato are being marketed in the specialty markets. Blackberry is also being chip-processed by the Great Lakes Chip Co. in Traverse City, MI.

Disease and Insect Resistance Breeding

Scab: In 2021, we had two locations to evaluate scab resistance: a commercial field with a history of severe scab infection (we thankfully acknowledge the support of Sackett Potatoes for this important trial) and a highly infected site at the Montcalm Research Center. In 2021, the commercial site and the Montcalm Research Center both gave us very good scab infection levels. The susceptible checks of Snowden and Atlantic were highly infected with pitted scab. Promising resistant selections were MST252-1Y, MSV179-1, MSX324-1P, MSW474-01, MSBB614-15, as well as the Z-series selections MSZ242-07, MSZ242-09 and MSZ242-13 from the commercial scab site. If you examine the variety trials at Montcalm Research Center you will notice that many of the lines are scab resistant. We need to continue in this direction of many selections with scab resistance so we can find the great scab resistant chipper as well as table yellow and red. The high level of scab infection at the on-farm site with a history of scab infection and MRC has significantly helped with our discrimination of resistance and susceptibility of our lines. The MRC scab site was used for assessing scab susceptibility in our advanced breeding lines and early generation material and is summarized below (Figure 1). All susceptible check plots (Snowden and Atlantic) were scored as susceptible.

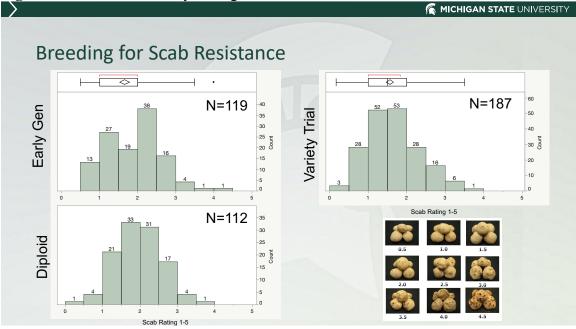
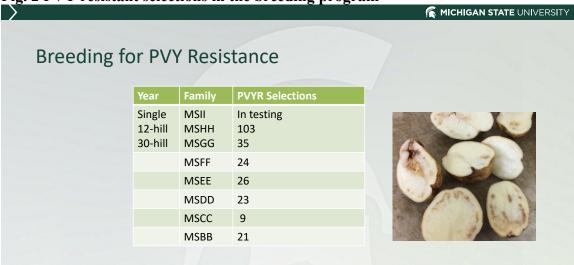



Fig. 1. Scab Disease Nursery Ratings from Montcalm Research Center Trials

Based upon this data, scab resistance is strong in the breeding program. We lead the nation in scab resistant lines. This is evident in the NCPT. These data were also incorporated into the early generation selection evaluation process at Lake City. We are seeing that this expanded effort is leading to more scab resistant lines advancing through the breeding program. The ability to select under commercial settings at Sackett Potatoes is accelerating our ability to select for highly scab resistant varieties. MSZ052-13, MSZ219-1, MSZ219-13, MSZ219-14, MSZ242-09 and MSZ242-13 are some of the first scab resistant chippers to advance through this effort. Other highly scab resistant lines (score < 1.0) are MSBB613-7, MSBB614-15, MSCC282-3RR, MSDD085-13, MSDD247-11, MSEE101-2, MSEE207-2 MSEE247-6WP, MSW474-1, MSX324-1P, MSEE048-2Y, MSEE063-6, MSFF334-1Pinto, MSAA076-04, MSAA076-6, MSAA241-1, MSAA309-15, MSAA498-18, MSBB012-1Y, MSCC376-1, MSDD244-15, MSFF073-3, MSFF178-1, MSY022-2, MSY543-2 and MSZ248-02.

Late Blight: Our specific objective is to breed improved cultivars for the industry that have foliar and tuber resistance to late blight using a combination of conventional breeding, marker-assisted strategies and transgenic approaches. Through conventional breeding approaches, the MSU potato breeding and genetics program has developed a series of late blight resistant advanced breeding lines and cultivars that have diverse sources of resistance to late blight. In 2021 we conducted late blight trials at the MSU campus. We inoculated with the US23 genotype and obtained infection. The infection progressed and we were able to confirm late blight resistance for Mackinaw, Huron Chipper and numerous breeding lines such as MSBB058-4. We are not reporting late blight trial results this year. We will continue with late blight trials in 2022 on the MSU campus.

PVY: We are using PCR-based DNA markers to select potatoes resistant to PVY. The gene is located on Chromosome 11. In our first round we made crosses in 2013 to generate over 7,000 progeny segregating for PVY resistance. Each year since 2013 we are making new crosses, making selections and expanding the germplasm base that has PVY resistance (Fig. 2). In the past year we tested over 1,200 progeny for the PVY resistance marker. The 560 that were marker positive were evaluated at Lake City. About 138 selections were made to advance for further evaluation. We are also using DNA markers to also screen for PVX resistance, PLRV resistance, late blight resistance and Golden nematode resistance. As a result of this work, Mackinaw has PVY resistance. More PVY resistant advanced selections are in the queue that will be evaluated in 2022. We have identified an advanced breeding line, MSCC725-232 that combines three virus resistance genes (PVY, PVX and PLRV). This line is being used as a parent in the breeding program.

Fig. 2 PVY resistant selections in the breeding program

- MSU Germplasm has incorporated PVY Resistance in many market classes Round whites, Red skinned, Yellow flesh, Specialty (pigmented).

MSU Lines with Commercial Tracking

MSV093-1Y (Bonafide)

Parentage: McBride x MSP408-14Y **Developers:** Michigan State University and the MSU AgBioResearch. **Plant Variety Protection:** To be applied for

Strengths: MSV093-1Y is a high yield potential yellow-flesh breeding line with an attractive, round tuber shape. This line has demonstrated excellent high yield potential in replicated trials at the MSU Montcalm Research Center and on grower field trials throughout Michigan. This yellow flesh line has excellent internal quality (few defects)

and a low incidence of blackspot bruise. MSV093-1Y also has moderate scab tolerance. MSV093-1Y has a strong vine and a mid-early season maturity.

Incentives for production: High yield potential with an attractive tuber shape with good yellow flesh with excellent internal quality.

Mackinaw (MSX540-4) – in Commercial production

Parentage: Saginaw Chipper x Lamoka Developers: Michigan State University and the MSU AgBioResearch. Plant Variety Protection: To Be Applied For.

Strengths: MSX540-4 is a chipprocessing potato with resistance to potato virus Y (PVY), late blight (*Phytophthora infestans*),

tolerance to common scab (*Streptomyces scabies*), and demonstrated tolerance to *Verticillium* wilt. This variety has average yield with a high specific gravity, and a high percentage of A-size tubers with an attractive, uniform shape. MSX540-4 has a strong vine and a mid- to late-season maturity and has demonstrated excellent long-term storage

chip-processing quality. MSX540-4 has performed well in multiple locations in the PotatoesUSA National Chip Processing Trials (NCPT).

Incentives for production: Long-term chip-processing quality with resistance to PVY and late blight, and tolerance to common scab.

Morphological Characteristics:

Plant: Medium height vine, semi-erect with a balance between stems and foliage visible, and flowers.

Tubers: Round tubers with lightly netted, tan colored skin. Tubers have a creamy-white flesh with a low incidence of internal defects.

Agronomic Characteristics:

Vine Maturity: Mid- to late-season maturity.

Tubers: Smooth shaped tubers with lightly netted, tan colored skin and a creamy-white flesh.

Yield: Average yield under irrigated conditions, with uniform A-size tubers.

Specific Gravity: Averages similar to above Snowden in Michigan.

Culinary Quality: Chip-processes from short to long-term storage.

Diseases: Resistant to PVY and late blight (*Phytophthora infestans*), tolerant to common scab (*Streptomyces scabies*).

Petoskey – in Commercial production (MSV030-4)

Parentage: Beacon Chipper x MSG227-2 **Developers:** Michigan State University and the MSU AgBioResearch. **Plant Variety Protection:** To Be Applied For.

Strengths: Petoskey is a chipprocessing potato with resistance to common scab (*Streptomyces scabies*). This variety has high specific gravity

and yield potential, with attractive, uniformly round tubers. Petoskey has a medium vine and a mid-season maturity and has demonstrated excellent long-term storage chipprocessing quality. MSV030-4 has performed well in Michigan and multiple locations in the PotatoesUSA National Chip Processing Trials (NCPT) and national SFA (SNaC) trials.

Incentives for production: Excellent chip-processing quality out of the field and long-term chip quality with high specific gravity and resistance to common scab, and a good size profile of uniform, round tubers.

Morphological Characteristics:

Plant: Medium height vine, semi-erect with a balance between stems and foliage visible, and flowers.

Tubers: Uniform, smooth, round tubers with lightly netted, tan colored skin. Tubers have a white flesh with a low incidence of internal defects.

Agronomic Characteristics:

Vine Maturity: Mid-full season maturity.

Tubers: Smooth, round tubers with lightly netted, tan colored skin and white flesh. **Yield:** Above average yield under irrigated conditions, with uniform tubers. **Specific Gravity:** Averages higher than Atlantic and Snowden. **Culinary Quality:** Chip-processes from short and long-term storage.

Diseases: Resistant to common scab (*Streptomyces scabies*).

Huron Chipper (MSW485-2) – in Commercial production

Parentage: MSQ070-1 x MSR156-7 **Developers:** Michigan State University and the MSU AgBioResearch. **Plant Variety Protection:** To Be Applied For.

Strengths: MSW485-2 is a chipprocessing potato with resistance to and late blight (*Phytophthora infestans*), and stronger tolerance to common scab (*Streptomyces scabies*) than Atlantic. This variety has high yield and good specific gravity, with attractive,

uniformly round tubers. MSW485-2 has a strong vine and a mid-season maturity and has demonstrated excellent long-term storage chip-processing quality. MSW485-2 has performed well in multiple locations in the PotatoesUSA National Chip Processing Trials (NCPT) and national SFA (SNaC) trials.

Incentives for production: Excellent chip-processing quality out of the field and long-term chip quality with resistance to late blight and a good size profile.

Morphological Characteristics:

Plant: Medium height vine, semi-erect with a balance between stems and foliage visible, and flowers.

Tubers: Uniform, smooth, round tubers with lightly netted, tan colored skin. Tubers have a white flesh with a low incidence of internal defects.

Agronomic Characteristics:

Vine Maturity: Mid-season maturity. Tubers: Smooth, round tubers with lightly netted, tan colored skin and a white flesh. Yield: Above average yield under irrigated conditions, with uniform tubers. Specific Gravity: Averages similar to above Atlantic and Snowden. Culinary Quality: Chip-processes from short to long-term storage.

Diseases: Resistant to late blight (*Phytophthora infestans*) and tolerant to common scab (*Streptomyces scabies*).

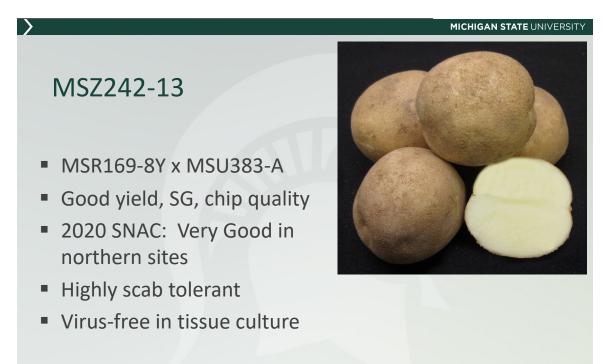
Blackberry – in commercial production (MSZ109-10PP)

Parentage: COMN07-W112BG1 x MSU200-5PP Developers: Michigan State University and the MSU AgBioResearch Plant Variety Protection: To Be Applied For.

Strengths: Blackberry is a tablestock variety with unique purple skin and a deep purple

flesh. The tubers have an attractive, uniform, round shape and a purple flesh with common scab resistance and low incidence of internal defects. Yield can be high under irrigated conditions. Blackberry will also chip-process out of the field.

Incentives for production: The unique purple skin and purple flesh of the tubers of Blackberry offer a unique potato that could lend itself to the specialty variety market, such as gourmet restaurants and food stores, as well as farm and road-side markets. The primary market for this clone will be farm market and direct retail sale growers, and home gardeners. This variety is also used as a gourmet chip processing variety.


Morphological Characteristics:

Plant: Full-sized vine, semi-erect with a balance between stems and foliage visible, and flowers.

Tubers: Round tubers with a smooth skin and unique purple skin and purple flesh color. Tubers have a deep purple flesh with a low incidence of internal defects.

Agronomic Characteristics:

Maturity: Mid-season. Tubers: Round tubers with unique purple skin and deep purple flesh. Yield: Above average yield. Specific Gravity: Averages 1.065 in Michigan. **Culinary Quality:** Gourmet specialty with deep purple flesh and also chip-processes. **Diseases:** Good common scab resistance.

MICHIGAN STATE UNIVERSITY

MSW474-1

- MSN190-2 x MSP516-A
- 2020 SNAC
- Good yield, SG, chip quality
- Scab resistant
- Virus-free in tissue culture

Application of Molecular Markers in MSU Potato Breeding

With the development of molecular markers for potato breeding, marker-assisted selection has been incorporated into our routine breeding practice and greatly facilitate the selection process. Some of the main markers that are used at MSU include: *RYSC3* and M6, *Potato virus Y* (PVY) resistance markers; *RxSP*, a *Potato virus X* (PVX) resistance marker; *TG689*, a Golden Nematode resistance marker; RB and R8, late blight resistance marker. PVY markers have been the most frequently used tools to assist selection in our program due to the importance of PVY resistance. According to the pedigrees, selections from our single-hill trial (1st year of field selection) are screened for PVY markers every year. This allowed for a prioritization of the space in the field, and for earlier, more informed decisions in variety selection.

The trait mapping populations have been a major research focus for us over the previous four years as we try to correlate the field data with the genetic markers. We now have DNA SNP markers linked to late blight resistance, scab resistance, chip color, tuber asparagine and specific gravity. We will now start using this linkage information to assist us in breeding. Our first SNP marker is linked to a gene for late blight resistance on Chr. 9 and the second is located on Chr. 10 with new ones recently identified on Chr. 4 and Chr. 5. The ability to use the DNA markers to stack a set of late blight resistance genes will lead to durable late blight resistance. We are now bringing in late blight resistance genes from germplasm from Europe and China.

Decoding S. chacoense-derived Colorado Potato Beetle Resistance

Our goal is to provide durable Colorado potato beetle management in an integrated, sustainable manner. With this research we should be able to move towards developing resistant diploid parental lines for commercial breeding purposes. Our specific objectives are to:

- 1. Characterize beetle feeding and mortality on gene-edited potato lines lacking expression of candidate genes involved in the *S. chacoense* resistance mechanism.
- 2. Assess the inheritance of *S. chacoense* host plant resistance in diploid introgression populations.
- 3. Evaluate the transmission of *S. chacoense* host plant resistance in a set of diverse cultivated diploid clones.

We evaluated the five most resistant inbred lines in the field in comparison to the resistant 80-1 line, the resistant hybrid and susceptible Atlantic. Other research in the breeding program involved creating hybrids with other wild species of potato that may have resistance to insects. We included six lines in the trial to collect preliminary data on this germplasm. To ensure substantial and uniform beetle pressure in the field, the susceptible cultivar Atlantic was planted from seed pieces in early May around the perimeter of the field and in alternate rows of the trial.

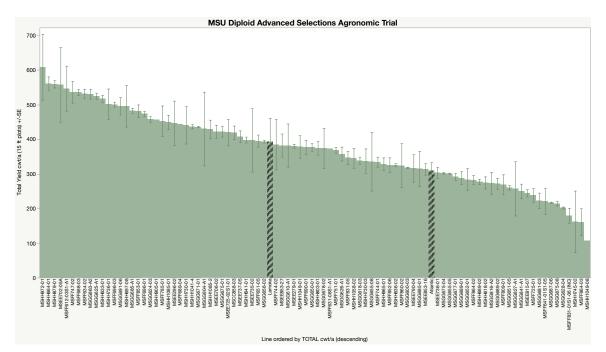
The F1 hybrid was highly resistant as well as the five inbred lines. These genotypes held strong against the first generation of beetles but four of the five inbred succumbed to the exceptional second-generation beetle pressure when most of the susceptible Atlantic foliage had already been eaten. Hence, the beetle pressure in the 2021 season was able to separate the higher level of resistance of inbred 431 and the F1 from the four other inbreds. With this information, we are now making crosses with the inbred 431 to our best cultivated diploid germplasm we have developed in our breeding program. Inbred 431 is a great genetic resource because of its high field resistance to the Colorado potato beetle, intermediate tuber glycoalkaloid levels, self-compatibility as well as high male fertility. Using inbred 431 will more likely transmit resistance to a greater percentage of the progeny because the genes related to insect resistance are more likely fixed. Selfing will then recover the homozygous condition of recessive loci contributing to beetle resistance.

Interestingly, four of the hybrids between our diploid germplasm and other wild potato species with non-leptine-based resistance were identified to have an extremely high level of resistance to Colorado potato beetle. Two of the lines were hybrids that are 50% cultivated diploid germplasm. One is a hybrid with *S. jamesii* and the other one is a hybrid with *S. commersonii*. Both lines showed a unique resistance phenotype (Figure 3). We have observed leptine-based beetle resistance is a toxic foliar glycoalkaloids as well as a feeding deterrent. The wild species hybrids we tested attracted the beetles (both large larvae and adults) but after a small amount of feeding, the beetles dropped from the plant and died. These lines offer opportunities to pyramid the resistance mechanisms as we move forward with our breeding for Colorado potato beetle resistance.

Figure 3. Solanum species hybrids with cultivated diploid potato demonstrating new sources of non-leptine-based Colorado potato beetle resistance.

Overcoming Self-Incompatibility in Diploid Potato Using CRISPR-Cas9

The aim of this project was to generate a targeted knock-out (KO) of the *S-RNase* and HT-B genes, involved in gametophytic self-incompatibility in diploid potatoes, using CRISPR/Cas9 technology in an effort to avoid self-pollen degradation. We identified *S-RNase* alleles and HT-B with flower-specific expression in two diploid self-incompatible lines using genome resequencing data. *S-RNase* gene mapped to chromosome 1 within a low recombination region and HT-B to chromosome 12. *S-RNase* and *HT-B* double KO lines were obtained causing premature stop codons. Fruits were set in selected KO and produced viable T1 seeds. Our results suggest that creating *S-RNase* KO can contribute to generation of self-compatible lines as a first step for the generation of commercial diploid cultivars. Knocking out HT-B with S-RNase increases seed set in self pollinations. This is now an important trait to work with in our diploid breeding.


Dihaploid Potato Production at Michigan State University

The benefits of developing a richer germplasm of dihaploid potatoes brings the industry ever closer to the expansive changes that would come with diploid potatoes. Many of the difficulties associated with tetraploid potatoes, such as problems with seed storage, would be greatly reduced if the potato had a lower, and therefore less complicated, ploidy. Our goal is to develop a broad-based dihaploid germplasm that can be used in diploid potato breeding. We started by crossing currently established MSU tetraploid germplasm with a known haploid inducer, *S. phureja* IVP 101. Parent lines were selected based on traits such as high yield, disease resistance, and good chip quality, among others. Resulting seeds were inspected for a purple embryo spot and grown in tissue culture before transplanting in the greenhouse. Chloroplast numbers in guard cells were counted to determine ploidy level. Plants that we determined to be diploid were also SNP genotyped with the Infinium 22 or 30K Potato SNP array for ploidy determination. These dihaploids were then tested for disease resistance markers:

RYSC3+ (Potato Virus Y extreme resistance), GN (Golden Nematode) resistance, and PVX resistance. Those with a Jacqueline Lee lineage were also tested for presence of late blight resistance via a SNP KASP assay. Confirmed dihaploids were crossed with a diploid self-compatible inbred line of *S. chacoense*, M6 to introgress self-compatibility. Of the hundreds of seeds produced in the past 6 years from these dihaploid crosses with over 30 breeding lines or varieties, about 400 progeny have been confirmed as diploid. These dihaploids (diploids derived from tetraploid varieties) are the foundation of our diploid breeding program for round white potatoes for the chip and table markets. We have also now selected some russet dihaploids and red dihaploids and well as more chippers, table and russets in 2021. We have about 50 good female fertile dihaploids that are forming the core of our varietal diploid breeding program.

Introgressing Self-compatibility to *Solanum tuberosum* Dihaploids for Diploid Variety Development

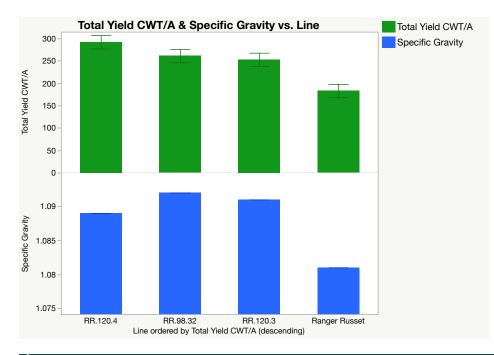
Dihaploids of cultivated potato (*Solanum tuberosum* L.) have been produced for over 50 years to reduce the breeding and genetic challenges of autopolyploidy. Most dihaploids are male sterile (MS) that reduces the benefit of lower ploidy level of cultivated tetraploid potato. In this study, we used three self-compatibility (SC) donors to introgress SC into a wide range of dihaploid germplasm through a series of crosses to dihaploids which we refer to as *S. tuberosum* backcrossing. The SC increased from 11% in the F₁ generation to 33% in the BC₂ generations. Over 6,000 genome-wide SNPs were used to characterize the germplasm diversity, heterozygosity, and structure in two backcrossing generations. The BC₃ generation was significantly improved regarding maturity, scab resistance, average tuber number. In 2021, we yield tested about 85 lines. Over 30 lines were equal or better than Lamoka and Atlantic in yield.

Germplasm Enhancement

The diploid genetic material represent material from South American potato species and other countries around the world that are potential sources of resistance to Colorado potato beetle, late blight, potato early die, and ability to cold-chip process. We are now placing more emphasis on the diploid breeding effort because of the advantages the breeding system brings when we introduce the ability to self-pollinate a line. Features of diploid breeding include 1) a simpler genetic system than current breeding methods, 2) tremendous genetic diversity for economic traits, 3) minimal crossing barriers to cultivated potato, 4) the ability to reduce genetic load (or poor combinations) through selfing and 5) the ability to create true breeding lines like wheat, soybeans and dry beans. We are also using some inbred lines of S. chacoense that have fertility and vigor (also a source of Verticillium wilt resistance to initiate our efforts to develop inbred lines with our own diploid germplasm. We have over 40 populations that we have cycled 5 generations to improve for selfcompatibility and tuber traits. We have also been crossing self-compatible donors to the dihaploids of Atlantic, Superior, Manistee, MSZ219-14, Kalkaska, MSR127-2, MSS576-5SPL and others so we can develop inbred chip-processing diploid lines. This new diploid potato breeding project is expanding to develop promising lines to use as parents in the future as well as to think about F1 hybrid varieties.

Certified NFT Minituber Production at Michigan State University

Since 2016, the MSU Potato Breeding program has operated its own certified NFT minituber production greenhouse. The ability to produce certified seed allows faster introduction of early generation material to the potato industry. It also helps position the program for participation in international trials.


				🌊 міснів	AN STATE UNIVER
2021 Certified S - 46 Clones, 32,000 M		duction	at MSU		
Line	Tubers F	Remarks	Line	Tubers	Remarks
Blackberry (MSZ109-10PP)	2500		MSW474-1	1400	
Mackinaw	2300		MSZ109-05RR	2200	
Petoskey	2000		MSZ109-07PP	600	
Raspberry	2000		MSZ242-13	500	
Spartan Red #2 (Red Marker #2)	1200		MSZ416-8RY	577	
MSAA076-6	600				
MSAA217-3	500		DIA-MSU-UB015	1100	USAID-LB
MSAA260-3	500		Diamant	550	USAID-Check
MSBB058-1	500		Granola UI	450	USAID-Check
MSBB230-1	500			430	USAD-CHECK
MSBB238-1RY	500				
MSBB610-13	500				
MSBB626-11	400				
MSV093-1Y	1000				
MSV179-1	1500				

Integration of Genetic Engineering with Potato Breeding

MSU conducts genetic engineering research to introgress and test economically important traits into potato. We have a USAID-funded project to create and commercialize 3-R-gene potato varieties in Bangladesh, Indonesia and Africa. This a partnership with Simplot Plant Sciences. Simplot has been creating the plants for the target countries. 2019 and 2020 greenhouse and field trials show that a high level of resistance to late blight has been achieved in events that have no backbone and are single inserts. Agronomic and late blight trials in Indonesia demonstrate their resistance to late blight and yield well under late blight pressure.

We have also generated lines with the genes for water use efficiency. The XERICO gene is showing the most promise. From 2018 to 2021, we conducted trials at MRC with Ranger Russet events. These results are indicating that we are not seeing a yield reduction from the XERICO gene and the XERICO events also had a higher specific gravity than Ranger Russet. Field trials at MRC in 2021 confirm this observation. Lastly, we have generated and selected a Kalkaska invertase silencing line (Kal91.03) that has resistance to accumulating reducing sugars in cold (40°F) storage. We tested the agronomic characteristics of Kal91.03 from 2016-2019. The initial results are suggesting that the invertase silencing line has good tuber type, size and similar specific gravity. This suggests that we can correct sugar issues in a chip processing lines with this genetic engineering strategy.

K MICHIGAN STATE UNIVERSITY

Agronomic Yield Trials

≻

	Yield (cwt/a)	Pe	rcent	By We	eight (9	%)		The Property	•				
Line	US#1	Total	US#1	Bs	As	OV	PO	SPGR	HH	VD	IBS	BC		
Kal.91.03	290	382	75	25	75	0	0	1.082	0	10	0	0	2016	
Kalkaska	365	438	83	17	83	0	0	1.080	5	5	0	0	2016	
Kal.91.03	335	399	84	16	84	0	0	1.083	0	3	0	0	2017	
Kalkaska	348	401	86	13	86	1	0	1.087	0	5	0	0	2017	
Kal.91.03	313	390	79	20	79	0	0	1.082	0	7	0	0	Mean	•
Kalkaska	356	420	85	15	85	0	0	1.084	3	5	0	0	Mean	

2019 – Block trial at MRC, Samples in MPIC Demonstration Storage and MSU Campus

Kalkaska Chipped directly after 6 months at 40F

2021 POTATO VARIETY EVALUATIONS

D.S. Douches, J. Coombs, K. Zarka, G. Steere, M. Zuehlke, K. Shaw, C. Long, J. Willbur and W. Behling

Department of Plant, Soil, and Microbial Sciences Michigan State University East Lansing, MI 48824

INTRODUCTION

Each year, the MSU potato breeding and genetics team conducts a series of variety trials to assess advanced potato selections from the Michigan State University and other potato breeding programs at the Montcalm Research Center (MRC). In 2021, we tested over 205 varieties and breeding lines in the replicated variety trials, 130 lines in the North Central Regional trial plus over 153 lines in the National Chip Processing Trial (NCPT). The variety evaluation also includes disease testing in the scab nursery (Montcalm Research Center) and foliar late blight evaluation (MSU Campus Plant Pathology Farm). The objectives of the evaluations are to identify superior varieties for fresh or chip-processing markets (chip, round white/yellow table, specialty/red and russet). The varieties were compared in groups according to market class, tuber type, skin color, and to the advancement in selection. Each season, total and marketable yields, specific gravity, tuber appearance, incidence of external and internal defects, chip color (from the field as well as from 45°F (7.2°C) storage at 3 and 6 months), along with susceptibilities to common scab, late blight (foliar and tuber), and blackspot bruising are determined.

We would like to acknowledge the collaborative effort of the Michigan Potato Industry and research colleagues Matthew Klein and the MSU Potato Breeding Team (especially graduate students Natalie Kaiser, Sarah Lee, Kaela Panicucci and Will Behling) for helping to get the field research done.

PROCEDURE

The field variety trials were conducted at the Montcalm Research Center in Entrican, MI. Due to COVID-19-related university research constraints, trial replication was reduced to a maximum of two. A randomized complete block design was used. The plots were 23 feet (7 m) long and spacing between plants was 10 inches (25.4 cm). Interrow spacing was 34 inches (86.4 cm). Supplemental irrigation was applied as needed. Nutrient, weed, disease and insect management were similar to recommendations used by the commercial operations in Montcalm County. The field experiments were conducted on a sandy loam soil that has been out of potato production for 5 years. Oats were grown in 2020 on this ground. A few severe rain events in 2021 flooded the northern tiers of some of the trials. There was no serious damage from insects, diseases or weeds. The most advanced selections were tested in the Advanced chip and tablestock trials, representing selections at a stage after the preliminary trials. The other field trials were the Preliminary (chip-processors and tablestock), Preliminary Pigmented, the NCPT and the early observational trials.

2021 was the eleventh year of the National Chip Processing Trial (NCPT). The purpose of the trial is to evaluate early generation breeding lines from the US public breeding programs for their use in chip-processing. The NCPT has 9 trial locations (Northern sites: NY, MI, WI, ND, OR and Southern: NC, FL, CA, TX) in addition to a scab trial Wisconsin. The North Central trial was reformatted to have 15-hill plots of earlier generation selections for a total of 130 lines plus controls for the chip, russet and table markets.

In each of these trials, the yield was graded into four size classes (pick outs, Bs, As, oversize) using the new Kerian sizer on the grading line, incidence of external and internal defects in >3.25 in. (8.25 cm) diameter potatoes were recorded. Samples were taken for specific gravity, chip-processing, disease tests and bruising tests. Chip quality was assessed on composite tuber samples, taking two slices from each tuber. Chips were fried at $345^{\circ}F$ ($174^{\circ}C$) for 2 minutes 15 seconds or until fully cooked. The chip color was measured visually with the SFA 1-5 color chart. Stem end scores were also recorded. Tuber samples were also stored at $45^{\circ}F$ ($7.2^{\circ}C$) for chip-processing out of storage in January and April. The lines in the agronomic trials were assessed for common scab resistance at the nursery at the Montcalm Research Center. There has been very strong scab disease pressure at the new Montcalm Scab Disease Nursery for nine years now. The 2021 late blight trial was conducted at the MSU campus Plant Pathology Farm. The simulated blackspot bruise (from $50^{\circ}F$ tuber temperature) results for average spots per tuber have also been incorporated into the summary sheets.

RESULTS

A. Advanced Chip-Processing Trials (Table 1)

A summary of the 39 entries evaluated in the trial results is given in **Table 1**. Overall, the yields for the Advanced trial (145 days) were above average. The check varieties for this trial were Lamoka, Manistee, Snowden and Atlantic. The highest yielding and most promising lines were MSBB630-2, MSAA252-7, MSBB626-11, MSAA217-3, Mackinaw, Huron Chipper and MSAA076-6. Internal defects were noted with some lines showing susceptibility to hollow heart, IBS or brown center. Specific gravity was average with a trial average of 1.082. Snowden and Atlantic had a specific gravity of 1.084 and 1.089, respectively. All chip-processing entries in the trial had excellent chip-processing quality out of the field, with an SFA score of 1.0. Almost all of the MSU breeding lines have scab resistance. Twenty-four MSU chipping lines were classified as having scab resistance scores equal or better than Lamoka. Mackinaw (MSX540-4) has PVY and late blight resistance while MSZ614-15 and MSBB630-2 has scab, PVY and late blight resistance. Other promising lines to watch are Petoskey, MSZ242-13, MSDD247-11, MSDD247-07, MSBB058-3, MSBB230-1 and MSBB058-4.

B. North Central Regional Trial (Table 2)

This trial provided a new format to test our fourth-year material in Michigan as well as ND, MN and WI. The trial with 130 lines was evaluated after 125 days. The promising chippers in the trial were MSFF007-2, MSFF037-17, MSFF017-1 and MSFF097-6. Our promising table lines are MSFF353-R, MSFF182-1R, MSFF130-1R. At this time are results are showing that we are obtaining lines with scab and PVY resistance.

C. Adaptation Trial (Table 3)

The Adaptation Trial of the tablestock lines was harvested after 145 days and the results of 37 lines are summarized in **Table 3**. The many of the lines evaluated in the Adaptation Trial were tested in the Preliminary Trials the previous year. The reference cultivars Yukon Gold and Superior are reported in the tablestock trial. In general, the yields were average and internal defects were observed in some lines. The promising lines were MSZ416-8RY, MSZ109-8PP, MSDD483-1, MSV093-1Y, MSBB371-1YSPL, MSCC553-1R and MSZ551-1. MSZ551-1 combines high yield with scab, PVY and late blight resistance. We are hoping to commercial MSV093-1Y as Bonafide. Scab tolerance is becoming more prevalent among the advanced selections, but the challenge remains to combine scab, PVY and late blight resistance with a commercial skin finish. Other promising lines in the trial are MSV179-1, MST252-1Y and Blackberry. MSU has obtained PVP for Blackberry. Blackspot bruising was low for most lines.

D. Preliminary Trials (Tables 4, 5 and 6)

The Preliminary trials (chip, table, pigmented) are the first trials for evaluating new advanced selections from the MSU potato breeding program. The division of the trials was based upon pedigree assessment for chip-processing and tablestock utilization. In 2021, there were 83 harvested entries trialed in the three Preliminary trials at 132 days. PVY resistance is found in over a third of the lines tested.

The chip-processing Preliminary Trial (**Table 4**) had 55 harvested entries after 132 days. Most of the lines chip-processed well from the field but only 14 lines had specific gravity values greater than Snowden at 1.084. Internal quality weakness was predominantly hollow heart. Scab resistance was prevalent among the lines. Promising MSU lines are MSDD376-4, MSFF079-16, MSEE207-2, MSEE063-6, MSEE035-4, MSDD244-05, MSEE101-2, MSDD372-07 and MSEE031-3 combining yield, specific gravity, scab resistance and chip quality. Most of these lines also have PVY resistance. We continue to make progress selecting for chip-processing with scab resistance with 27 lines in the trial with scab ratings equal or lower than 1.7, whereas Snowden had a scab rating of 3.0.

Table 5 summarizes 21 harvested tablestock entries evaluated in the Preliminary Tablestock Trial. Reba was the check variety. This tablestock trial was harvested and evaluated after 132 days. MSDD088-1, MSEE048-2Y, MSEE075-1 and FF120-2Y all have high yield potential, low internal defects and scab resistance, as well as low blackspot bruising. In general, the level of scab resistance and internal quality are improving in this pool of lines. We are working towards better skin finish also.

The interest in the specialty market continues to increase. In 2021, 19 harvested entries were evaluated in the Preliminary Pigmented Trial (**Table 6**), which was harvested at 132 days. This trial evaluated breeding lines with unique skin and flesh colors. Many of these MSU lines have commercial agronomic performance and specialty characteristics, but scab resistance varied among the lines. Eight lines were scored as scab resistance. Blackspot bruising is low and internal defects were mostly hollow heart. MSW476-4RY, MSFF247-2Y, MSFF142-2SPL, MSBB308-2P and MSFF305-1RY combine yield and scab resistance.

E. Diploid Replicated trial (Table 7)

16 Diploid lines were agronomically evaluated against Atlantic and Lamoka. The trial was harvested at 132 days. Four lines were comparable in yield to Atlantic and Lamoka. Three lines that yielded well in 2020 were much lower in yield. We attribute this to virus in the seed used. This trial demonstrates that we are achieving greater yield potential as we breed at the diploid level. We will continue to focus on yield but we will put more emphasis on market traits as we continue to breed and select.

F. Potato Common Scab Evaluation (Tables 8 and 9)

Each year, a replicated field trial is conducted to assess resistance to common scab. The scab trial is now located at the Montcalm Research Center where high common scab disease pressure was observed in the previous nine years. This location is being used for the early generation observational scab trial (119 lines) and the scab variety trial (185 lines) and diploid scab trial (188). In 2021, the scab infection was a good level with the susceptible controls having some coverage of pitted scab.

We use a rating scale of 0-5 based upon a combined score for scab coverage and lesion severity. Usually examining one year's data does not indicate which varieties are resistant but it should begin to identify ones that can be classified as susceptible to scab. Our goal is to evaluate important advanced selections and varieties in the study at least three years to obtain a valid estimate of the level of resistance in each line. The 2019-2021 scab ratings are based upon the Montcalm Research Center site. **Table 8** categorizes many of the varieties and advanced selections tested in 2021 over a three-year period. The varieties and breeding lines are placed into nine categories based upon scab infection level and lesion severity. A rating of 0 indicates zero scab infection. A score of 1.0 indicates a trace amount of infection. A moderate resistance (1.2 - 1.5) correlates with <10% infection without pitting. Scores of 4.0 or greater are found on lines with >50% surface infection and severe pitted lesions.

The check varieties Russet Norkotah, GoldRush, Red Norland, Yukon Gold, Pike, Atlantic, and Snowden can be used as references (in bold, **Table 8**). The table is sorted in ascending order by 2021 scab rating. This year's results continue to indicate that we have been able to breed numerous lines with resistance to scab. Average scab ratings ranged from 0.2 - 3.5 for the variety trial. A total of 101 entries tested had a scab rating of 1.5 or lower in 2021. Most notable scab resistant MSU lines are found in the trial summaries (**Tables 1-7**). Of the 119 early generation selections that were evaluated, 59 had scab resistance (scab rating of ≤ 1.5) (**Table 9**).

F. Late Blight Trial (Table 10)

In 2021, the late blight trial was planted at the East Lansing campus Plant Pathology farm. All entries were planted in early June for late blight evaluation. These include lines tested in a replicated manner from the agronomic variety trial and entries in the early generation observation plots. The trials were inoculated two times in August with the US-23 genotype of *P. infestans*. Late blight infection was progressed well and data was collected into September. Sixteen of 42 lines were classified as late blight resistant in the replicated trial. Twelve of the lines also PVY resistant.

G. Blackspot Bruise Susceptibility (Table 11)

Evaluations of advanced seedlings and new varieties for their susceptibility to blackspot bruising are also important in the variety evaluation program. Based upon the results collected over the past years, the non-bruised check sample has been removed from our bruise assessment. A composite bruise sample of each line in the trials consisted of 25 tubers (a composite of 4 replications) from each line, collected at the time of grading. The 25-tuber sample was held in 50°F (10°C) storage overnight and then was placed in a hexagon plywood drum and tumbled 10 times to provide a simulated bruise. The samples were peeled in an abrasive peeler in October and individual tubers were assessed for the number of blackspot bruises on each potato. These data are shown in **Table 11.** The bruise data are represented in two ways: percentage of bruise free potatoes and average number of bruises per tuber. A high percentage of bruise-free potatoes is the desired goal; however, the numbers of blackspot bruises per potato is also important. Cultivars which show blackspot incidence greater than Atlantic are approaching the bruise-susceptible rating. In addition, the data is grouped by trial, since the bruise levels can vary between trials. In 2021, the bruise levels were higher than previous years. There are many lines with lower blackspot bruise potential across the trials. Some of our advanced selections are similar to or less than Atlantic and Snowden in their level of bruising. A few lines will high susceptibility to bruise were identified and will be discontinued from testing. All the bruise ratings are also found in the variety trial tables (Tables 1-7).

H. National Chip Processing Trial (NCPT) data available on-line

The Potatoes USA-funded National Chip Processing Trial (NCPT) is an effort to synergize the strengths of the public breeding programs in the U.S. to identify improved

chip-processing varieties for the industry. Cooperating breeding programs include the USDA (Idaho and Maryland) and land grant universities (Colorado, Maine, Michigan, Minnesota, North Carolina, North Dakota, New York, Oregon, Wisconsin and Texas). The coordinated breeding effort includes early-stage evaluation of key traits (yield, specific gravity, chip color, chip defects and shape) from coordinated trials in 10 locations. Since the inception of the trial in 2010, over 1,000 different potato entries, including reference varieties, have been evaluated. The data for all the lines tested are summarized on a searchable, centralized database housed at Medius (https://potatoesusa.medius.re). More than 40 promising new breeding lines from the trials have been fast-tracked for larger-scale commercial trials and processor evaluation. The NCPT is also a feeder for the national SNAC International trials. We are using the NCPT trials to more effectively identify promising new selections. Notable MSU lines that have been identified are MSW485-2 (Huron Chipper), MSX540-4 (Mackinaw), MSV030-4 (Petoskey), MSW474-1, and MSZ242-13. Our newest graduates of the NCPT are MSBB230-1, MSAA217-3 and MSBB626-11. Minituber production and/or commercial seed have been produced of the newer lines and will be tested in Michigan in 2022.

ADVANCED CHIP-PROCESSING TRIAL MONTCALM RESEARCH CENTER May 5 to September 27, 2021 (145 days)

DD Base 40°F 3402⁹

													Р	ERCE	ENT (%	6)				LB^8	3-YR AVG
	PVY		CV	WT/A	PER	CENT	Γ OF 1	ΓΟΤΑ	L^1		CHIP	OTF	TU	BER Q	UAL	TY^4				RAUDPC	US#1
LINE	Resistant	N	US#1	TOTAL	US#1	Bs	As	OV	РО	SP GR	SCORE ²	SED ³	HH	VD	IBS	BC	SCAB ⁵	MAT ⁶	BRUISE ⁷	x100	CWT/A
MSBB630-2	PVYR	2	598	642	93	6	93	0	1	1.078	-	-	0	0	10	0	1.3	3.5	4.0	0.1	-
MSAA252-7	PVYR	2	551	565	98	2	87	11	0	1.081	1.0	3	0	5	45	0	1.5	4.0	3.3	1.5	470*
MSY022-2		2	495	529	93	5	93	0	2	1.079	1.0	0	35	0	0	0	0.5	3.0	1.8	-	-
MSCC725-232	PVYR	2	463	490	94	5	94	0	1	1.075	1.0	1	50	5	0	5	1.8	3.0	2.1	-	-
MSAA076-6		2	429	498	86	14	86	0	0	1.083	1.0	1	0	0	0	0	0.8	2.5	2.8	-	366
MSBB613-7	PVYR	2	426	438	97	2	97	0	1	1.077	-	-	45	10	0	5	0.3	3.0	-	0.9	-
MSBB626-11	PVYR	2	418	435	96	4	95	1	0	1.084	1.0	1	0	5	0	5	1.4	3.5	2.8	4.3	398*
MSAA217-3		2	417	440	95	5	94	1	0	1.094	1.0	3	70	0	0	0	2.3	3.0	3.0	-	332*
Mackinaw	PVYR	2	415	448	93	7	93	0	0	1.081	1.0	0	0	0	0	0	1.8	3.0	2.2	2.1	294
Huron Chipper		2	414	453	91	9	91	0	0	1.082	1.0	2	5	15	0	10	1.8	3.0	1.2	0.5	327
MSAA091-1		2	413	451	91	9	91	0	0	1.084	1.0	0	5	5	0	0	2.3	3.0	1.2	28.4	-
MSDD247-11	PVYR	2	400	429	93	6	93	0	1	1.091	1.0	0	10	0	0	0	1.0	2.0	3.0	11.4	-
MSBB075-1Y		2	400	436	92	6	91	1	2	1.078	1.0	0	0	5	0	0	2.1	2.0	2.0	-	-
MSBB058-3	PVYR	2	390	406	96	4	96	0	0	1.080	1.0	0	0	0	0	0	1.4	4.0	3.8	0.2	-
MSBB635-14	PVYR	2	379	418	90	10	90	0	1	1.070	-	-	0	10	0	0	1.3	2.5	-	1.4	349*
MSZ242-13		2	374	395	95	4	95	0	1	1.093	1.0	0	0	0	0	0	1.4	3.0	2.2	-	284
MSBB614-15	PVYR	2	364	377	97	3	96	1	0	1.078	1.0	0	15	0	0	5	0.7	2.5	1.6	1.1	-
MSAA328-4		2	363	379	96	4	96	0	0	1.079	-	-	0	0	0	0	1.2	2.5	-	-	355*
MSCC058-1		2	362	376	96	4	96	0	0	1.083	1.0	0	5	35	0	0	1.2	2.5	4.0	-	326*
MSBB230-1		2	360	423	85	15	85	0	0	1.088	1.0	0	0	0	5	0	2.3	2.5	2.3	-	-
MSBB058-4	PVYR	2	359	402	89	11	89	0	0	1.079	1.0	0	0	0	0	0	1.8	4.0	1.6	7.7	-
Petoskey		2	352	414	85	13	85	0	2	1.090	1.0	0	15	0	0	0	1.3	3.0	2.6	-	250
Petoskey (POP)		2	340	402	85	15	85	0	0	1.089	-	-	0	0	0	5	2.3	3.0	2.6	-	-
Atlantic		2	330	358	92	8	92	0	0	1.089	1.0	2	25	10	0	0	2.8	2.0	2.7	39.7	233
MSZ242-07		2	330	356	92	7	92	0	1	1.092	1.0	0	0	0	0	0	1.3	3.0	3.1	-	285*
Snowden		2	321	372	86	14	86	0	0	1.084	-	-	0	25	0	0	3.0	2.0	2.8	10.1	239
MSDD247-07	PVYR	2	308	339	91	9	91	0	0	1.095	1.0	2	0	0	20	5	0.8	3.0	3.2	-	-
MSBB611-3	PVYR	2	307	382	80	18	79	1	2	1.083	-	-	0	0	0	25	1.5	3.0	3.6	0.4	314*
Lamoka		2	306	352	87	12	87	0	0	1.080	1.0	0	0	20	0	0	1.5	2.0	1.6	28.6	258

												Р	ERCE	ENT (%	6)				LB^8	3-YR AVG
	PVY		CWT/A	PE	PERCENT OF TOTAL ¹			_	CHIP	CHIP OTF TUBER QUALITY ⁴					_			RAUDPC	US#1	
LINE	Resistant N	J US	#1 TOTA	US#1	Bs	As	OV	РО	SP GR	SCORE ²	SED ³	HH	VD	IBS	BC	SCAB ⁵	MAT ⁶	BRUISE ⁷	x100	CWT/A
MSBB017-1	2	2 2	341	84	15	84	0	1	1.080	1.5	1	20	15	0	0	1.8	2.0	2.6	-	-
MSAA498-18	2	2 2	288	96	4	96	0	0	1.081	1.0	0	0	0	5	5	0.8	2.5	1.5	10.8	290*
MSAA260-3	2	2 2	75 319	86	12	85	1	3	1.083	1.0	1	0	0	10	35	1.3	3.0	3.6	-	263*
MSW474-1	2	2 2	350	78	22	78	0	0	1.078	-	-	0	0	0	0	0.7	2.0	2.5	-	-
MSAA311-1	2	2 2	308	89	11	89	0	0	1.076	1.0	0	0	5	0	5	1.3	2.0	2.1	-	-
MSDD040-01	2	2 2	73 290	93	6	92	1	1	1.074	-	-	10	0	0	0	1.1	2.0	-	-	-
MSDD244-15	PVYR 2	2 2	38 265	90	9	90	0	1	1.073	-	-	0	0	15	0	1.0	3.0	-	-	-
Manistee	2	2 2	29 265	87	13	87	0	1	1.080	1.0	0	0	5	0	0	2.8	1.5	1.1	-	229
MSDD085-13	PVYR 2	2 2	06 284	72	28	72	0	0	1.082	-	-	0	5	0	5	0.7	1.0	2.0	-	-
MEAN		3	51 398						1.082							1.5	2.7	2.5		276
$HSD_{0.05}$		2	41 232						0.011											

¹SIZE: B: < 2 in.; A: 2-3.25 in.; OV: > 3.25 in.; PO: Pickouts.

²CHIP SCORE: SNAC Scale (Out of the field); Ratings: 1-5; 1: Excellent, 5: Poor.

³ SED: Stem End Defect, Based on Paul Bethke's (USDA/UWisconsin - Madison) 0 - 5 scale. 0 = no SED; 3 = significant SED; 5 = severe SED	Plant Date:	5/5/2021
⁴ QUALITY: HH: Hollow Heart; BC: Brown Center; VD: Vascular Discoloration; IBS: Internal Brown Spot. Percent of 40 Oversize and/or A-size tubers cut.	Vine Kill:	9/8/2021
⁵ SCAB DISEASE RATING: MSU Scab Nursery; 0: No Infection; 1: Low Infection <5%; 3: Intermediate; 5: Highly Susceptible.	Days from planting to vine kill:	126
⁶ MATURITY RATING: August 24, 2021; Ratings 1-5; 1: Early (vines completely dead); 5: Late (vigorous vine, some flowering).		

⁷BRUISE: Simulated blackspot bruise test, average number of spots per tuber.

⁸LB RAUDPC: Late blight (*P. infestans* US-23) foliar disease reaction.

⁹Enviroweather: Entrican Station. Planting to vine kill

NORTH CENTRAL REGIONAL TRIAL MONTCALM RESEARCH CENTER May 5 to September 7, 2021 (125 days) DD Base 40°F 3072⁶

	PVY	_	CWT/A		PERCENT OF TOTAL ¹						CHIP	OTF	TUBER QUALITY ⁴				
LINE	Resistant	t N	US#1	TOTAL	US#1	Bs	As	OV	РО	SP GR	SCORE ²	SED^3	HH	VD	IBS	BC	MAT ⁵
Chip																	
MSFF007-2		1	563	606	93	7	93	0	0	1.079	1.0	1.0	0	10	0	0	4.0
MSFF036-1	PVYR	1	551	592	93	7	91	3	0	1.072	1.0	1.0	0	10	0	0	3.0
W17039-31		1	533	622	86	14	86	0	0	1.093	1.0	1.0	0	10	0	0	4.0
ND14251B-5		1	527	553	95	4	95	0	1	1.074	-	-	0	0	0	0	4.0
W17AF6685-2		1	508	601	84	14	84	0	1	1.080	1.0	1.0	0	0	0	0	3.0
ND14247CAB-2		1	506	545	93	7	93	0	0	1.080	1.0	1.0	10	10	0	0	2.0
MSFF037-17	PVYR	1	498	567	88	11	88	0	1	1.082	1.5	1.0	0	20	0	0	4.0
W17039-7		1	479	592	81	19	81	0	0	1.085	1.5	1.0	0	0	0	0	3.0
W17AF6670-1		1	476	520	91	9	91	0	0	1.082	1.0	0.0	0	0	0	0	3.0
MN18AF6730-6		1	459	527	87	8	87	0	5	1.068	2.5	3.0	20	20	0	0	3.0
MSFF038-3	PVYR	1	446	487	92	8	92	0	0	1.078	1.0	1.0	0	10	0	0	3.0
MN18AF6675-2		1	436	539	81	9	81	0	11	1.074	1.0	2.0	0	0	0	0	3.0
MN18W17043-17		1	432	472	92	8	92	0	0	1.084	-	-	30	0	10	0	3.0
MN18W17039-5		1	427	475	90	10	90	0	0	1.080	-	-	0	0	10	0	3.0
Atlantic		2	424	461	92	6	92	0	2	1.088	1.0	1.0	35	0	0	0	2.5
MSFF017-1		1	423	466	91	7	91	0	2	1.083	1.0	1.0	0	10	0	0	3.0
W17066-11		1	418	487	86	13	86	0	1	1.084	1.0	0.0	10	10	0	0	3.0
MSFF050-1		1	410	477	86	11	83	3	3	1.071	1.0	1.0	10	0	0	10	3.0
W17043-37		1	406	496	82	18	82	0	0	1.089	1.0	1.0	0	0	0	0	3.0
W17060-9		1	399	551	73	27	73	0	0	1.089	1.0	1.0	0	10	0	0	4.0
MSFF206-2	PVYR	1	397	446	89	8	89	0	3	1.076	1.5	2.0	0	10	0	0	4.0
W17065-21		1	396	469	84	8	84	0	8	1.079	1.0	0.0	30	0	10	0	3.0
W17067-1		1	396	501	79	21	79	0	1	1.087	1.0	1.0	0	0	0	0	3.0
MSFF097-6	PVYR	1	395	476	83	17	83	0	0	1.084	1.0	1.0	0	0	0	0	3.0
MSFF217-1	PVYR	1	383	463	83	16	83	0	1	1.076	1.0	1.0	20	0	0	0	3.0
MN18AF6730-5		1	382	444	86	11	86	0	3	1.079	1.5	2.0	0	10	0	0	2.0
W17037-3		1	362	439	82	15	82	0	3	1.080	1.0	1.0	0	0	0	0	3.0
MN18W17037-34		1	358	394	91	9	91	0	0	1.081	1.0	1.0	0	10	0	0	3.0
Lamoka		2	355	399	89	10	89	0	2	1.081	1.0	2.0	0	10	5	0	2.0
MN18W17052-6		1	349	389	90	10	90	0	0	1.082	1.5	1.0	0	0	0	0	3.0

									1						CENT (%	· .	
	PVY	-	CV	WT/A	PERCENT OF TOTAL ¹						CHIP	OTF	Т	UBER	QUALI	TY ⁴	
LINE	Resistant	Ν	US#1	TOTAL	US#1	Bs	As	OV	РО	SP GR	SCORE ²	SED^3	HH	VD	IBS	BC	MAT ⁵
Snowden		2	347	406	85	15	85	0	0	1.086	1.0	1.0	0	20	0	0	3.0
ND14247CAB-4		1	345	458	75	12	75	0	13	1.073	-	-	40	0	0	0	3.0
MSFF077-4	PVYR	1	344	371	93	7	93	0	0	1.073	1.0	1.0	0	10	0	0	2.0
MSFF022-2		1	342	392	87	13	87	0	0	1.076	1.5	2.0	0	0	0	0	3.0
MN18W17037-26		1	322	356	91	7	91	0	2	1.079	1.5	2.0	0	10	0	0	3.0
MSFF303-3	PVYR	1	319	429	74	26	74	0	0	1.074	1.0	1.0	0	10	0	0	3.0
MN18AF6658-5		1	314	349	90	7	90	0	3	1.080	1.0	1.0	20	10	0	0	3.0
MSFF058-1		1	314	353	89	10	89	0	1	1.077	1.0	1.0	0	0	0	0	2.0
MN18W17057-5		1	312	337	93	7	93	0	0	1.072	1.0	1.0	0	20	30	0	2.0
MN18AF6717-6		1	310	377	82	6	82	0	11	1.072	1.0	1.0	10	0	0	10	4.0
W17060-22		1	308	343	90	10	90	0	0	1.082	1.0	1.0	0	0	10	0	2.0
ND14138AB-9		1	307	368	83	17	83	0	0	1.081	1.0	1.0	0	10	0	0	3.0
W17066-34		1	301	395	76	24	76	0	0	1.083	1.0	1.0	0	0	0	0	2.0
MSFF292-1		1	296	354	84	15	84	0	1	1.090	1.0	1.0	0	0	0	0	3.0
MN18W17037-11		1	295	325	91	9	91	0	0	1.081	1.0	1.0	10	10	0	10	2.0
MSFF206-1	PVYR	1	295	375	79	20	79	0	2	1.077	1.0	1.0	0	10	0	0	2.0
W17067-13		1	294	477	62	38	62	0	1	1.088	1.0	1.0	0	10	0	0	2.0
W17049-10		1	288	387	74	26	74	0	0	1.093	1.0	1.0	0	10	0	0	2.0
MN18W17039-25		1	285	349	82	18	82	0	0	1.088	1.5	1.0	10	0	10	0	3.0
MN18W17043-6		1	275	328	84	7	84	0	9	1.085	1.0	1.0	0	0	0	0	2.0
ND14246CAB-4		1	268	364	74	26	74	0	0	1.070	1.0	1.0	0	10	0	0	1.0
MSFF061-1		1	265	306	87	12	87	0	2	1.081	1.0	2.0	0	0	10	0	3.0
MN18W17037-38		1	258	290	89	11	89	0	0	1.070	1.0	1.0	0	0	80	0	2.0
MN18AF6717-2		1	258	338	76	22	76	0	1	1.092	1.0	1.0	10	10	0	0	3.0
MN18W17052-4		1	247	334	74	26	74	0	0	1.098	1.0	1.0	0	0	0	0	4.0
ND14163AB-4		1	245	320	76	23	76	0	0	1.073	1.5	1.0	0	20	0	0	2.0
ND14192B-1		1	238	330	72	26	72	0	2	1.076	1.5	1.0	0	10	0	0	1.0
MN18W17037-21		1	218	267	81	19	81	0	0	1.083	1.0	1.0	20	10	10	0	2.0
ND14165AB-2		1	194	258	75	22	75	0	3	1.073	1.5	1.0	10	0	0	0	2.0
MN18AF6643-13		1	133	220	61	28	61	0	11	1.072	1.0	0.0	0	20	0	0	3.0
ND14199CAB-5		1	118	454	26	74	26	0	0	1.085	1.0	0.0	10	0	0	0	2.0
ND14193ABC-4		1	53	257	21	79	21	0	0	1.071	1.0	1.0	0	0	0	0	1.0
MEAN			352	425						1.080					3.0	0.5	2.7

													PERC	CENT (%	b)	
	PVY	C	WT/A	PER	CENT	Г OF 1	OTAI	- 1		CHIP	OTF	Т	UBER	QUALI	TY^4	
LINE	Resistant N	US#1	TOTAL	US#1	Bs	As	OV	РО	SP GR	SCORE ²	SED^3	HH	VD	IBS	BC	MAT ⁵
Russet																
W17091-5rus	1	593	661	90	9	90	0	1	1.076	-	-	0	0	0	0	4.0
ND14172B-2Russ	1	524	620	84	14	84	0	2	1.090	-	-	30	0	0	0	3.0
W17098-43rus	1	477	591	81	17	81	0	2	1.080	-	-	0	0	0	0	2.0
W17079-4rus	1	456	655	70	28	70	0	3	1.081	-	-	0	0	0	0	4.0
W17069-53rus	1	436	502	87	10	87	0	3	1.083	-	-	10	0	0	0	4.0
W17099-6rus	1	393	504	78	14	78	0	8	1.076	-	-	0	0	0	0	2.0
W17096-14rus	1	373	488	76	16	76	0	7	1.083	-	-	0	0	0	0	2.0
ND14172B-1Russ	1	353	487	72	23	72	0	5	1.083	-	-	0	0	0	0	3.0
MN18W17079-11	1	350	391	90	10	90	0	0	1.079	-	-	0	10	0	0	4.0
W17086-10rus	1	335	453	74	26	74	0	0	1.080	-	-	0	0	0	0	2.0
W17073-3rus	1	327	446	73	26	73	0	1	1.087	-	-	0	0	0	0	2.0
ND14172B-4Russ	1	309	361	86	13	86	0	2	1.081	-	-	0	20	0	0	2.0
W17098-19rus	1	305	408	75	20	75	0	5	1.091	-	-	0	0	0	0	2.0
W17081-2rus	1	299	436	69	26	69	0	5	1.084	-	-	0	20	0	0	2.0
W17092-2rus	1	296	361	82	12	82	0	6	1.072	-	-	0	0	0	0	2.0
ND14173-2Russ	1	295	421	70	25	70	0	5	1.076	-	-	0	10	0	0	1.0
Russet Burbank	2	279	482	58	33	58	0	9	1.072	-	-	10	10	0	0	1.5
MN18W17091-5	1	264	380	69	31	69	0	0	1.072	-	-	0	0	0	0	1.0
Goldrush	2	252	366	68	27	68	0	5	1.070	-	-	0	15	0	0	1.5
Russet Norkotah	1	242	350	69	30	69	0	1	1.073	-	-	10	0	0	10	1.0
ND14261B-1Russ	1	191	336	57	39	57	0	4	1.082	-	-	0	20	0	0	2.0
MN18AF6758-2	1	128	241	53	42	53	0	5	1.086	-	-	10	10	0	0	2.0
ND14174-1Russ	1	45	260	17	75	17	0	8	1.077	-	-	0	50	0	0	1.0
MEAN		327	443						1.080					0.0	0.4	2.2

									1						CENT (%	/	
	PVY		CV	WT/A	PER	CENT	r of 1	[OTA]	Ĺ		CHIP	OTF	Т	UBER	QUALI	TY ⁴	-
LINE	Resistant	Ν	US#1	TOTAL	US#1	Bs	As	OV	PO	SP GR	SCORE ²	SED^3	HH	VD	IBS	BC	MAT ⁵
Red																	
MSFF353-1R		1	636	674	94	6	94	0	0	1.073	1.5	2.0	0	10	0	0	4.0
W17005-3R		1	503	617	82	16	82	0	2	1.066	-	-	0	20	0	0	2.0
ND14302-8R		1	471	531	89	11	89	0	0	1.065	-	-	0	0	0	0	2.0
ND14151-9R		1	469	551	85	15	85	0	0	1.071	-	-	0	0	0	0	3.0
MN18CO15083-6		1	424	605	70	30	70	0	0	1.074	-	-	0	10	0	0	4.0
MN18W17009-1		1	400	479	84	14	84	0	2	1.067	-	-	0	0	0	20	2.0
W17AF6698-1R		1	393	497	79	20	79	0	1	1.065	-	-	0	10	0	0	2.0
MN18W17026-2		1	392	540	73	24	73	0	3	1.064	-	-	0	10	0	0	2.0
W17027-3R/Y		1	370	449	83	17	83	0	0	1.070	-	-	30	0	0	0	2.0
ND14151-24R		1	370	449	82	15	82	0	2	1.063	-	-	0	0	10	0	3.0
W16025-5R		1	358	485	74	26	74	0	1	1.064	-	-	0	10	0	0	1.0
ND14336-6R		1	334	412	81	16	81	0	3	1.057	-	-	0	0	0	10	1.0
W17002-13R		1	312	467	67	32	67	0	1	1.067	-	-	0	0	10	0	1.0
W16030-4R		1	311	429	73	27	73	0	1	1.066	-	-	0	0	0	0	1.0
W17026-4R		1	304	460	66	34	66	0	0	1.058	-	-	0	0	0	0	2.0
ND14151-15R		1	303	429	71	29	71	0	0	1.073	-	-	10	0	0	0	3.0
Red Norland		2	296	352	84	16	84	0	0	1.061	-	-	10	20	0	0	1.0
MN18CO15117-2		1	296	384	77	20	77	0	3	1.075	-	-	0	0	0	0	2.0
MN18SR00011-2		1	292	405	72	28	72	0	0	1.073	-	-	0	10	0	0	2.0
MSFF182-1R	PVYR	1	260	475	55	45	55	0	1	1.085	1.5	2.0	0	30	0	0	3.0
ND14151-20R		1	257	405	63	36	63	0	1	1.064	-	-	0	20	0	0	3.0
Dark Red Norland		2	255	302	85	15	85	0	1	1.060	-	-	5	10	0	0	1.5
W17027-2R		1	240	439	55	44	55	0	2	1.061	-	-	0	0	0	0	1.0
Red LaSoda		1	234	289	81	18	81	0	1	1.067	-	-	0	10	0	10	2.5
MSFF130-1R	PVYR	1	203	365	56	44	56	0	0	1.067	-	-	0	10	0	0	2.0
ND14299-3RY		1	202	293	69	30	69	0	1	1.070	-	-	0	20	0	0	1.0
ND14168B-2R		1	179	370	48	49	48	0	3	1.084	-	-	0	0	0	0	2.0
W17007-5R		1	171	306	56	42	56	0	2	1.063	-	-	0	20	0	0	1.0
MSFF160-1R		1	121	218	56	42	56	0	2	1.058	-	-	0	10	0	0	4.0
MSFF145-2R		1	110	265	42	58	42	0	1	1.070	-	-	0	0	0	0	1.0
MSFF223-1RY	PVYR	1	108	269	40	57	40	0	3	1.077	1.5	2.0	0	0	0	0	1.0
MSFF228-1RY		1	63	321	20	80	20	0	0	1.064	-	-	0	0	0	0	1.0
MEAN			301	423						1.068					0.6	1.3	2.0

													PERO	CENT (%	b)	
	PVY	C	WT/A	PER	CENT	OF 1	ΓΟΤΑ	L^1		CHIP	OTF	Т	UBER	QUALI	TY^4	_
LINE	Resistant N	US#1	TOTAL	US#1	Bs	As	OV	РО	SP GR	SCORE ²	SED^3	HH	VD	IBS	BC	MAT ⁵
Speciality																
MSFF335-2RR	1	545	654	83	17	83	0	0	1.063	2.0	2.0	0	0	0	0	4.0
MN18TX17760-2	1	484	544	89	4	89	0	6	1.067	2.0	3.0	0	0	0	0	3.0
MSFF351-1RR	1	369	496	74	19	74	0	6	1.064	-	-	0	0	0	10	3.0
MN18CO16154-9	1	310	441	70	29	70	0	1	1.089	-	-	0	0	100	0	2.0
MSFF335-1RR	1	279	566	49	51	49	0	0	1.069	-	-	0	0	0	0	3.0
MN18TX17730-8	1	194	426	46	53	46	0	2	1.072	1.5	2.0	0	10	0	0	3.0
MSFF134-2RR	1	141	274	51	47	51	0	2	1.066	-	-	0	20	0	0	1.0
MN18CO16213-2	1	63	253	25	75	25	0	0	1.075	1.5	2.0	0	0	0	0	2.0
MEAN		298	457						1.070					12.5	1.3	2.6
HSD _{0.05}		303	361						0.009							

¹SIZE: B: < 2 in.; A: 2-3.25 in.; OV: > 3.25 in.; PO: Pickouts.

²CHIP SCORE: SNAC Scale (Out of the field); Ratings: 1-5; 1: Excellent, 5: Poor.

³SED: Stem End Defect, Based on Paul Bethke's (USDA/UWisconsin - Madison) 0 - 5 scale. 0 = no SED; 3 = significant SED; 5 = severe SED

⁴QUALITY: HH: Hollow Heart; BC: Brown Center; VD: Vascular Discoloration; IBS: Internal Brown Spot. Percent of 40 Oversize and/or A-size tubers cut.

⁵MATURITY RATING: August 24, 2021; Ratings 1-5; 1: Early (vines completely dead); 5: Late (vigorous vine, some flowering).

⁶Enviroweather: Entrican Station. Planting to vine kill

Days from planting to vine kill: 114

Plant Date:

Vine Kill: 8/27/2021

5/5/2021

MICHIGAN STATE UNIVERSITY POTATO BREEDING and GENETICS

ADAPTATION TRIAL, TABLESTOCK LINES MONTCALM RESEARCH CENTER May 5 to September 27, 2021 (145 days)

DD Base 40°F 3402⁷

											Р	PERCE	ENT (%)				LB^{6}
	PVY		CV	WT/A	PEI	RCEN	IT OF	TOTA	L^1	_	TU	BER Ç	UALI	ΓY^2	_			RAUDPC
LINE	Resistant	N	US#1	TOTAL	US#1	Bs	As	OV	РО	SP GR	HH	VD	IBS	BC	SCAB ³	MAT ⁴	BRUISE ⁵	x100
MSZ551-1	PVYR	2	548	588	93	5	91	2	2	1.077	0	20	20	5	1.2	4.0	2.1	0.2
MSX245-2Y		2	511	547	93	6	92	1	1	1.087	0	10	0	0	1.7	4.0	2.4	10.4
MSX156-1Y		2	482	502	96	2	84	12	2	1.069	0	0	0	0	2.2	3.0	-	29.9
MSBB343-2Y		2	474	502	95	5	92	3	0	1.082	5	10	0	0	1.8	2.0	1.2	-
MSV093-1Y		2	451	494	91	6	91	0	2	1.078	0	0	0	0	1.7	3.0	1.0	-
Blackberry		2	429	530	81	19	81	0	0	1.062	0	0	0	0	2.2	3.0	0.4	-
MSV179-1		2	427	445	96	2	95	1	2	1.064	5	5	5	0	1.5	3.0	1.9	-
MSZ109-08PP		2	413	476	87	11	87	0	2	1.064	0	0	0	0	1.3	2.5	0.5	-
MSCC447-1WR		2	397	436	91	9	90	1	0	1.074	0	0	0	0	2.2	3.5	2.1	24
MSCC447-01WP		2	379	447	84	16	84	0	1	1.076	0	0	0	0	2.7	3.5	2.9	-
MSAA174-1	PVYR	2	375	413	91	7	90	0	3	1.065	0	10	15	25	1.8	3.0	1.7	-
MSCC302-1		2	372	444	82	17	82	0	0	1.079	0	0	0	5	2.0	2.0	2.4	8.2
MSDD483-1	PVYR	2	364	461	79	21	79	0	1	1.077	0	0	10	0	2.0	2.5	-	-
MSZ615-2		2	346	369	94	6	94	0	0	1.071	0	5	0	0	1.5	1.5	1.4	-
MSZ590-1SPL		2	344	404	85	14	85	0	1	1.068	10	0	0	0	1.3	2.5	1.5	14
MST252-1Y		2	332	416	80	14	80	0	6	1.072	0	5	0	0	1.5	1.0	1.5	27.3
MSZ416-8RY		2	332	380	87	9	87	0	4	1.059	0	5	0	0	1.0	2.0	0.5	-
MSZ598-2		2	330	357	92	7	91	1	1	1.073	0	10	0	0	1.8	2.0	1.3	-
MSAA101-01RR		2	324	431	75	25	75	0	0	1.079	0	0	0	0	1.2	2.5	2.2	-
MSZ427-3R		2	313	378	83	17	83	0	0	1.062	0	5	0	0	2.7	1.5	1.2	-
MSCC553-1R	PVYR	2	305	342	89	9	88	1	1	1.071	0	0	0	0	2.5	3.0	1.1	12.4
MSZ513-2		2	286	317	90	9	90	0	1	1.074	0	0	0	0	1.7	2.0	0.9	-
MSBB371-1YSPL		2	280	330	85	15	85	0	0	1.077	0	5	0	0	1.3	1.5	1.3	-
Yukon Gold		2	261	289	91	6	91	0	3	1.076	35	5	5	0	1.8	1.5	0.8	43.1
MSCC720-1WP		2	240	407	59	41	59	0	0	1.081	0	0	0	0	3.3	2.0	2.2	-
MSBB351-1		2	237	261	91	9	89	2	0	1.053	0	0	0	0	1.2	1.5	0.2	16.3
MSAA127-1PP		2	227	318	71	28	71	0	1	1.056	0	0	0	0	1.5	1.5	1.4	-
MSCC614-1RYSPI		2	224	413	54	46	54	0	0	1.082	0	5	0	0	1.7	2.5	nd	30.4
MSDD254-1SPL		2	220	244	90	9	89	1	1	1.062	10	5	0	5	1.8	1.0	0.2	-

											P	PERCE	NT (%))				LB^{6}
	PVY		CV	VT/A	PEI	RCEN	T OF	ΤΟΤΑ	L^1	-	TU	BER Ç	UALI	TY^2				RAUDPC
LINE	Resistant 1	N	US#1	TOTAL	US#1	Bs	As	OV	РО	SP GR	HH	VD	IBS	BC	SCAB ³	MAT^4	BRUISE ⁵	x100
MSBB364-1	,	2	213	228	93	5	93	0	2	1.051	0	0	0	0	1.5	3.0	0.6	-
MSZ157-3	1	2	208	322	65	34	65	0	1	1.078	0	0	0	5	2.5	2.0	0.5	-
MSZ427-1R	,	2	201	339	62	18	61	1	19	1.066	0	10	0	0	1.5	2.5	0.6	-
Superior	,	2	169	209	81	19	81	0	0	1.071	0	5	0	0	0.7	1.0	1.0	-
MEAN			334	395						1.071					1.8	2.3	1.3	
$HSD_{0.05}$			270	260						0.013								

¹SIZE: B: < 2 in.; A: 2-3.25 in.; OV: > 3.25 in.; PO: Pickouts. ²QUALITY: HH: Hollow Heart; BC: Brown Center; VD: Vascular Discoloration; IBS: Internal Brown Spot. Percent of 40 Oversize and/or A-size tubers cut. ³SCAB DISEASE RATING: MSU Scab Nursery; 0: No Infection; 1: Low Infection <5%; 3: Intermediate; 5: Highly Susceptible.

⁴ MATURITY RATING: August 24, 2021; Ratings 1-5; 1: Early (vines completely dead); 5: Late (vigorous vine, some flowering	i). Plant Date:	5/5/2021
⁵ BRUISE: Simulated blackspot bruise test average number of spots per tuber.	Vine Kill:	9/8/2021
⁶ LB RAUDPC: Late blight (<i>P. infestans</i> US-23) foliar disease reaction.	⁷ Enviroweather: Entrican Station. Planting to vine kill	126

PRELIMINARY TRIAL, CHIP-PROCESSING LINES MONTCALM RESEARCH CENTER May 5 to September 14, 2021 (132 days) DD Base 40°F 3402⁹

									1						ENT (%	· · · · ·				LB^8
	PVY			VT/A		PERCE	ENT OF	TOTAL		-	CHIP	OTF	TU		QUALI			,	-	RAUDPC
LINE	Resistant	Ν	US#1	TOTAL	US#1	Bs	As	OV	PO	SP GR	SCORE ²	SED ³	HH	VD	IBS	BC	SCAB ⁵	MAT ⁶	BRUISE ⁷	x100
MSBB190-2		1	564	583	97	3	96	1	0	1.081	1.0	2.0	0	0	0	0	1.7	3.0	3.2	-
MSDD376-4	PVYR	1	560	600	93	5	92	1	1	1.093	1.0	0.0	10	0	0	0	1.5	3.0	3.4	-
MSFF079-16	PVYR	1	551	565	98	2	89	9	0	1.078	1.0	1.0	20	10	0	0	-	3.0	2.1	-
MSEE207-2	PVYR	1	534	562	95	5	95	0	0	1.080	1.0	1.0	0	0	0	0	0.5	3.0	1.6	-
MSFF031-3	PVYR	1	517	591	88	12	88	0	0	1.074	1.0	1.0	0	10	0	0	1.2	2.0	1.7	-
MSEE063-6	PVYR	1	508	537	95	5	93	1	1	1.079	2.0	3.0	10	10	0	0	0.7	3.0	2.3	-
MSFF031-6	PVYR	1	507	557	91	9	91	0	0	1.070	1.0	2.0	0	0	0	0	1.0	3.0	2.3	-
MSEE035-4	PVYR	1	472	514	92	8	91	1	1	1.089	1.0	1.0	10	0	0	0	1.2	4.0	4.1	-
MSFF008-1		1	455	485	94	6	93	1	0	1.074	-	-	0	0	0	0	1.2	3.0	-	-
MSX495-2		1	442	475	93	3	93	0	4	1.079	1.0	0.0	20	0	0	0	2.2	3.0	2.9	0.3
MSDD244-05	PVYR	1	426	460	93	6	91	1	2	1.088	1.5	3.0	20	20	0	0	1.3	3.0	2.9	-
MSEE101-2		1	405	435	93	6	93	0	0	1.090	1.5	1.0	20	0	0	0	0.5	2.0	2.9	-
MSDD372-07	PVYR	1	400	469	85	15	85	0	0	1.093	1.0	1.0	0	0	0	0	1.7	3.0	3.2	-
MSEE163-1		1	397	444	89	10	89	0	0	1.072	-	-	0	30	0	0	1.0	2.0	-	-
MSEE169-1	PVYR	1	397	425	93	5	93	0	2	1.071	-	-	0	50	50	0	1.2	3.0	-	-
MSEE031-3	PVYR	1	392	431	91	6	91	0	3	1.086	1.0	2.0	10	10	0	0	1.3	3.0	3.3	-
MSBB029-1Y		1	387	466	83	14	83	0	2	1.081	1.0	1.0	0	0	0	0	1.0	2.0	1.8	-
Atlantic		1	381	415	92	6	92	0	2	1.092	1.0	1.0	40	20	0	0	2.8	3.0	2.5	39.7
MSDD553-1	PVYR	1	365	386	95	5	95	0	0	1.079	1.0	1.0	0	0	0	0	2.2	4.0	1.7	-
MSBB008-3		1	357	395	91	9	91	0	1	1.085	1.0	2.0	20	0	0	10	1.0	2.0	2.5	-
MSDD249-9	PVYR	1	337	354	95	5	94	1	0	1.081	1.0	2.0	0	0	10	0	1.8	3.0	2.6	-
MSEE016-07		1	333	347	96	4	96	0	0	1.092	1.0	1.0	10	0	0	0	1.8	3.0	2.0	-
MSBB190-3		1	326	339	96	4	96	0	0	1.076	-	-	0	0	0	0	2.0	3.0	-	-
MSFF029-10	PVYR	1	324	390	83	17	83	0	0	1.090	1.0	1.0	0	20	0	0	1.8	3.0	1.0	-
MSEE016-10	PVYR	1	322	378	85	15	85	0	0	1.091	1.0	1.0	0	0	0	0	2.0	3.0	3.5	-
MSZ218-5	PVYR	1	319	337	95	5	95	0	0	1.078	-	-	50	10	0	0	1.3	3.0	-	-
MSDD372-15		1	314	329	96	4	96	0	0	1.084	1.0	2.0	10	0	0	0	1.0	4.0	2.0	-
MSAA678-1		1	314	359	87	12	87	0	1	1.075	-	-	10	0	0	0	1.0	2.0	-	-
MSV241-2		1	305	334	91	8	91	0	1	1.091	1.5	1.0	50	20	0	0	2.2	3.0	3.4	-
MSEE002-3		1	304	345	88	12	88	0	0	1.091	1.0	2.0	0	0	0	0	2.2	3.0	2.2	-
MSFF072-1Y	PVYR	1	294	353	83	7	83	0	9	1.085	1.5	1.0	10	0	0	0	1.8	3.0	2.2	-
MSFF073-3	PVYR	1	293	329	89	10	89	0	1	1.089	1.0	2.0	0	0	0	0	0.8	3.0	2.3	-
MSY089-2		1	290	307	94	6	91	3	0	1.076	-	-	0	60	0	10	2.5	3.0	-	-
MSZ042-07		1	288	301	96	3	93	2	2	1.073	-	-	70	20	0	0	1.7	3.0	-	-

													I	PERCE	NT (%	5)				LB^8
	PVY		CV	VT/A		PERCE	ENT OF	TOTAL	1	_	CHIP	OTF	TU	BER Ç	UALI	TY^4	_			RAUDPC
LINE	Resistant	Ν	US#1	TOTAL	US#1	Bs	As	OV	РО	SP GR	SCORE ²	SED^3	HH	VD	IBS	BC	SCAB ⁵	MAT ⁶	BRUISE ⁷	x100
MSFF002-1		1	277	318	87	13	87	0	0	1.078	1.0	1.0	0	10	0	0	1.5	2.0	1.7	-
MSAA241-1		1	277	291	95	5	95	0	0	1.075	-	-	0	50	0	0	0.8	2.0	-	-
MSFF035-2	PVYR	1	271	330	82	13	82	0	5	1.079	1.0	1.0	10	0	0	0	1.5	1.0	2.8	-
Snowden		1	267	309	86	14	86	0	0	1.084	1.0	2.0	0	10	0	0	3.0	2.0	2.6	10.1
MSEE191-3Y	PVYR	1	249	265	94	5	88	5	1	1.072	-	-	30	0	0	0	2.2	4.0	-	-
Pike		1	232	263	88	12	88	0	0	1.083	1.0	2.0	0	0	0	0	1.0	2.0	1.8	-
MSAA266-1		1	202	232	87	4	87	0	9	1.066	-	-	0	0	0	0	1.5	2.0	-	-
MSEE182-3	PVYR	1	114	149	76	24	76	0	0	1.080	1.0	0.0	0	0	10	10	1.7	2.0	0.6	-
MSAA309-15		1	69	120	57	39	57	0	4	1.074	-	-	0	0	0	0	0.8	1.0	-	41.7
MEAN			357	392						1.081							1.5	2.7	2.4	

¹SIZE: B: < 2 in.; A: 2-3.25 in.; OV: > 3.25 in.; PO: Pickouts.

²CHIP SCORE: SNAC Scale (Out of the field); Ratings: 1-5; 1: Excellent, 5: Poor.

³SED: Stem End Defect, Based on Paul Bethke's (USDA/UWisconsin - Madison) 0 - 5 scale. 0 = no SED; 3 = significant SED; 5 = severe SED

⁴QUALITY: HH: Hollow Heart; BC: Brown Center; VD: Vascular Discoloration; IBS: Internal Brown Spot. Percent of 40 Oversize and/or A-size tubers cut.

⁵SCAB DISEASE RATING: MSU Scab Nursery; 0: No Infection; 1: Low Infection <5%; 3: Intermediate; 5: Highly Susceptible.

⁶MATURITY RATING: August 24, 2021; Ratings 1-5; 1: Early (vines completely dead); 5: Late (vigorous vine, some flowering).

⁷BRUISE: Simulated blackspot bruise test average number of spots per tuber.

⁸LB RAUDPC: Late blight (P. infestans US-23) foliar disease reaction.

⁹Enviroweather: Entrican Station. Planting to vine kill

Days from planting to vine kill:

Plant Date:

Vine Kill:

5/5/2021

9/8/2021

126

PRELIMINARY TRIAL, TABLESTOCK LINES MONTCALM RESEARCH CENTER May 5 to September 14, 2021 (132 days) DD Base 40°F 3402⁷

												PERC	CENT (%))				LB^{6}
	PVY		CV	WT/A	Р	ERCE	NT OF	TOTAL	1]	TUBER	QUALIT	Y^2				RAUDPC
LINE	Resistant	N	US#1	TOTAL	US#1	Bs	As	OV	РО	SP GR	HH	VD	IBS	BC	SCAB ³	MAT^4	BRUISE ⁵	x100
MSCC300-1		1	530	600	88	10	87	2	2	1.072	20	0	0	0	2.8	3.0	1.0	-
MSDD088-1		1	525	558	94	6	93	1	0	1.073	0	0	0	0	1.7	3.0	0.4	47.1
MSEE048-2Y	PVYR	1	467	489	95	5	95	0	0	1.077	0	0	0	0	0.7	3.0	1.8	-
MSDD251-2Y		1	455	500	91	9	91	0	0	1.072	60	0	0	0	2.5	2.0	0.7	27.1
MSEE075-1	PVYR	1	453	461	98	2	91	7	0	1.074	0	10	0	0	2.0	3.0	2.0	-
MSFF211-2	PVYR	1	448	477	94	5	94	0	1	1.065	40	0	0	10	1.3	3.0	0.4	-
MSFF191-1Y	PVYR	1	440	476	92	8	92	0	0	1.068	60	0	0	10	2.0	3.0	0.6	-
MSFF120-2Y		1	405	432	94	6	94	0	0	1.076	0	0	0	10	1.0	2.0	1.4	-
MSZ610-3		1	402	422	95	4	91	4	1	1.082	10	30	50	0	-	3.0	2.8	-
MSEE052-5		1	346	379	91	5	91	0	3	1.073	0	0	0	0	1.7	3.0	0.4	-
MSBB213-1SPL		1	289	319	91	9	88	3	0	1.075	0	10	0	0	1.8	4.0	3.0	-
Reba		1	283	305	93	6	93	0	1	1.071	10	0	0	0	2.2	2.0	1.6	-
MSBB323-1		1	276	298	93	7	93	0	0	1.089	0	0	0	50	1.3	3.0	1.0	-
MSX137-6	PVYR	1	260	338	77	21	77	0	2	1.074	0	10	0	0	2.8	2.0	1.4	-
MSDD107-1Y		1	234	329	71	29	71	0	0	1.075	0	0	0	0	1.8	5.0	1.2	-
MSFF055-1Y		1	208	311	67	33	67	0	0	1.068	0	0	0	0	1.0	2.0	1.2	-
MSFF189-1Y		1	199	230	86	14	86	0	0	1.063	0	0	0	0	2.0	1.0	0.2	-
MSFF178-1		1	189	214	88	12	88	0	0	1.066	0	0	0	0	0.8	3.0	0.5	-
MSZ263-4		1	147	191	77	23	77	0	0	1.073	0	0	0	0	1.7	3.0	0.3	-
MSBB262-1YSpl		1	130	259	50	50	50	0	0	1.066	0	0	0	0	2.0	1.0	0	53.1
MSCC512-1PP		1	124	369	34	66	34	0	0	1.068	0	0	0	0	2.5	2.0	1.3	-
MEAN			324	379						1.072					1.8	2.7	1.1	

¹SIZE: B: < 2 in.; A: 2-3.25 in.; OV: > 3.25 in.; PO: Pickouts.

²QUALITY: HH: Hollow Heart; BC: Brown Center; VD: Vascular Discoloration; IBS: Internal Brown Spot. Percent of 40 Oversize and/or A-size tubers cut.

³SCAB DISEASE RATING: MSU Scab Nursery; 0: No Infection; 1: Low Infection <5%; 3: Intermediate; 5: Highly Susceptible.

⁴MATURITY RATING: August 24, 2021; Ratings 1-5; 1: Early (vines completely dead); 5: Late (vigorous vine, some flowering).

⁵BRUISE: Simulated blackspot bruise test average number of spots per tuber.

⁶LB RAUDPC: Late blight (P. infestans US-23) foliar disease reaction.

⁷Enviroweather: Entrican Station. Planting to vine kill

Days from planting to vine kill:

Plant Date:

Vine Kill:

5/5/2021

9/8/2021

126

MICHIGAN STATE UNIVERSITY POTATO BREEDING and GENETICS

PRELIMINARY TRIAL, PIGMENTED LINES MONTCALM RESEARCH CENTER

May 5 to September 14, 2021 (132 days)

DD Base 40°F 3402⁷

											F	PERCE	ENT (%	5)				LB^{6}
	PVY		CV	WT/A	Р	ERCE	NT OF	TOTAI	1	_	TU	BER Q	UALI	TY^2				RAUDPC
LINE	Resistant	N	US#1	TOTAL	US#1	Bs	As	OV	РО	SP GR	HH	VD	IBS	BC	SCAB ³	MAT^4	Bruise ⁵	x100
MSEE055-1R	PVYR	1	525	576	91	9	90	1	0	1.074	0	0	0	0	3.0	3.0	1.4	-
MSW476-4RY		1	418	473	88	12	87	1	0	1.078	10	20	0	0	1.3	2.0	1.2	-
MSFF230-2PY		1	409	469	87	10	87	0	3	1.077	0	10	0	0	3.3	4.0	1.8	-
MSBB281-1PY		1	400	423	95	5	95	0	0	1.076	10	0	0	0	2.5	3.0	-	-
MSFF247-2Y	PVYR	1	396	477	83	16	83	0	1	1.069	0	0	0	0	2.0	2.0	0.8	-
MSFF230-1		1	393	605	65	34	65	0	1	1.086	0	0	0	0	3.5	4.0	1.5	-
MSFF200-4PYSPL	PVYR	1	387	507	76	24	76	0	0	1.065	0	10	0	0	2.3	2.0	1.5	-
MSFF142-2Spl		1	379	421	90	10	90	0	0	1.071	0	0	0	10	1.0	2.0	0.8	-
MSBB308-2P		1	367	408	90	10	90	0	0	1.062	0	0	0	0	1.2	2.0	0.9	-
MSFF134-1PP		1	365	444	82	18	82	0	0	1.075	0	0	0	0	1.8	2.0	0.0	-
MSAA157-2PY		1	341	421	81	19	81	0	0	1.071	70	0	0	0	3.3	3.0	1.7	32.0
MSFF305-1RY	PVYR	1	334	385	87	11	87	0	2	1.066	0	10	0	0	1.7	3.0	0.6	-
MSFF034-4P	PVYR	1	321	417	77	19	77	0	5	1.067	40	10	40	0	2.2	3.0	0.6	-
MSFF142-1P		1	317	461	69	31	69	0	0	1.073	0	10	0	0	1.5	4.0	-	-
Dark Red Norland	l	1	310	386	80	18	80	0	2	1.063	0	0	0	0	1.2	1.0	0.2	-
MSX324-1P		1	296	351	84	15	84	0	1	1.086	0	10	0	0	0.5	2.0	2.0	11.6
MSFF334-1Pinto		1	124	205	61	39	61	0	1	1.058	0	0	0	0	0.7	5.0	-	-
MSFF030-1WR	PVYR	1	102	174	59	35	59	0	7	1.059	0	0	0	0	1.2	2.0	-	-
MSFF198-13PY	PVYR	1	101	262	39	61	39	0	0	1.065	0	0	0	0	1.0	4.0	0.6	
MEAN			331	414						1.071					1.9	2.8	1.0	

¹SIZE: B: < 2 in.; A: 2-3.25 in.; OV: > 3.25 in.; PO: Pickouts.

²QUALITY: HH: Hollow Heart; BC: Brown Center; VD: Vascular Discoloration; IBS: Internal Brown Spot. Percent of 40 Oversize and/or A-size tubers cut.

³SCAB DISEASE RATING: MSU Scab Nursery; 0: No Infection; 1: Low Infection <5%; 3: Intermediate; 5: Highly Susceptible.

⁴MATURITY RATING: August 24, 2021; Ratings 1-5; 1: Early (vines completely dead); 5: Late (vigorous vine, some flowering).

⁵BRUISE: Simulated blackspot bruise test, average number of spots per tuber.

⁶LB RAUDPC: Late blight (*P. infestans* US-23) foliar disease reaction.

⁷Enviroweather: Entrican Station. Planting to vine kill

Days from planting to vine kill:

 Plant Date:
 5/5/2021

 Vine Kill:
 9/8/2021

126

DIPLOID REPLICATED TRIAL MONTCALM RESEARCH CENTER May 5 to September 14, 2021 (132 days) DD Base 40°F 3402⁸

												Р	ERCE	NT (%	ó)			
		CV	WT/A	PER	CENT	OF 7	ΓΟΤΑ	L^1		CHIP	OTF	TUI	BER Q	UALI	TY^4	_		
LINE	Ν	US#1	TOTAL	US#1	Bs	As	OV	РО	SP GR	SCORE ²	SED ³	HH	VD	IBS	BC	SCAB ⁵	MAT^{6}	BRUISE ⁷
MSHH1037-01	2	435	520	84	16	84	0	1	1.076	2.0	3	0	5	0	0	1.8	3.0	1.5
MSGG685-05	2	395	550	72	24	72	0	5	1.071	1.5	3	0	0	0	0	1.5	3.5	1.1
MSGG863-A1	2	374	405	93	7	93	0	0	1.079	1.0	1	0	5	0	0	2.3	2.5	2.1
Atlantic	2	366	393	93	6	93	0	1	1.091	1.0	1	20	0	0	5	2.8	2.0	1.7
MSHH699-02	2	336	482	70	27	69	0	3	1.073	2.0	2	20	5	5	0	2.8	4.0	1.6
Lamoka	2	324	375	86	13	86	0	1	1.086	1.0	1	0	10	0	0	1.5	2.0	1.9
MSEE815-06	2	266	332	80	15	80	0	6	1.078	1.0	1	20	10	15	40	1.5	2.0	2.8
MSHH618-01	2	251	389	65	31	65	0	4	1.063	2.5	3	0	0	0	0	1.3	3.0	0.8
MSDD829-09	2	230	298	76	22	76	0	1	1.070	2.5	2	0	0	0	0	2.0	4.0	1.3
MSHH1056-01	2	212	290	73	24	73	0	3	1.074	2.0	2	50	5	15	20	2.5	4.0	2.0
MSGG623-A2	2	210	437	48	47	48	0	5	1.083	2.0	2	75	0	0	0	2.3	3.0	1.0
MSGG653-A2	2	205	478	43	50	43	0	7	1.082	2.5	2	0	0	0	0	2.5	3.5	1.5
MSGG676-01	2	192	307	63	33	63	0	4	1.073	1.5	2	10	5	0	0	1.5	3.0	1.3
MSEE824-04	2	186	271	69	31	69	0	0	1.086	1.0	1	65	0	0	0	2.0	2.0	1.1
MSHH701-01	2	145	332	44	53	44	0	3	1.081	1.5	2	5	10	5	10	1.5	4.0	2.4
MSGG600-06	2	131	356	37	61	37	0	2	1.098	1.0	1	0	0	0	0	1.3	2.5	1.4
MSHH972-03	2	106	379	28	72	28	0	0	1.076	2.0	1	0	0	5	0	1.8	3.5	2.2
MSGG603-A5	2	52	342	15	84	15	0	1	1.078	2.5	3	20	0	0	0	2.8	2.0	1.2
MEAN		245	385						1.079							2.0	3.0	1.6
$HSD_{0.05}$		138	162						0.012									

¹SIZE: B: < 2 in.; A: 2-3.25 in.; OV: > 3.25 in.; PO: Pickouts.

²CHIP SCORE: SNAC Scale (Out of the field); Ratings: 1-5; 1: Excellent, 5: Poor.

³ SED: Stem End Defect, Based on Paul Bethke's (USDA/UWisconsin - Madison) 0 - 5 scale. 0 = no SED; 3 = significant SED; 5 = severe SED	Plant Date:	5/5/2021
⁴ QUALITY: HH: Hollow Heart; BC: Brown Center; VD: Vascular Discoloration; IBS: Internal Brown Spot. Percent of 40 Oversize and/or A-size tubers cut.	Vine Kill:	9/8/2021
⁵ SCAB DISEASE RATING: MSU Scab Nursery; 0: No Infection; 1: Low Infection <5%; 3: Intermediate; 5: Highly Susceptible. Days from pla	nting to vine kill:	126
⁶ MATURITY RATING: August 24, 2021; Ratings 1-5; 1: Early (vines completely dead); 5: Late (vigorous vine, some flowering).		

⁷BRUISE: Simulated blackspot bruise test, average number of spots per tuber.

⁸Enviroweather: Entrican Station. Planting to vine kill

MICHIGAN STATE UNIVERSITY

POTATO BREEDING and GENETICS

SCAB NURSERY, MUNICALM RESEARCH CENIER, MI												
	3-YR*	2021	2021	2021	2020	2020	2020	2019	2019	2019		
LINE	AVG.	RATING	WORS1	N	RATING	WORS1	N	RATING	6 WORST	Ν		
Sorted by ascending	2021 Averag	e Rating;										
MSZ052-13	0.4	0.2	0.5	3	0.5	0.5	3	0.7	1.0	3		
MSBB613-7	-	0.3	0.5	3								
MSBB614-15	-	0.3	0.5	3								
MSCC282-3RR	0.5*	0.5	0.5	3	0.5	0.5	3					
MSDD085-13	-	0.5	0.5	3								
MSDD247-11	-	0.5	0.5	3								
MSEE101-2	0.8*	0.5	0.5	3	1.0	1.5	3					
MSEE207-2	0.6*	0.5	0.5	3	0.7	1.0	3					
MSEE247-6WP	0.8*	0.5	0.5	3	1.0	1.5	3					
MSW474-1	-	0.5	0.5	3								
MSX324-1P	0.9	0.5	0.5	3	1.0	1.0	3	1.3	1.5	3		
MSEE048-2Y	-	0.7	1.0	3								
MSEE063-6	0.8*	0.7	1.0	3	1.0	1.0	3					
MSFF334-1Pinto	-	0.7	1.0	3								
Superior	1.4	0.7	1.0	3	1.8	2.5	2	1.7	2.0	3		
MSAA076-04	-	0.8	1.0	2								
Goldrush Russet	0.6	0.8	1.5	3	0.3	0.5	3	0.7	1.0	3		
MSAA076-6	1.3	0.8	1.0	3	1.3	1.5	3	1.8	2.5	3		
MSAA241-1	1.0*	0.8	1.5	3	1.2	1.5	3					
MSAA309-15	-	0.8	1.0	3								
MSAA498-18	0.8*	0.8	1.0	3	0.8	1.0	3					
MSBB012-1Y	-	0.8	1.0	3								
MSCC376-1	-	0.8	1.5	3								
MSDD244-15	-	0.8	1.0	3								
MSFF073-3	-	0.8	1.0	3								
MSFF178-1	-	0.8	1.0	3								
MSY022-2	-	0.8	1.5	3								
MSY543-2	-	0.8	1.5	3								
MSZ242-09	1.2	0.8	1.5	3	1.3	2.0	3	1.5	1.5	2		
MSZ248-02	1.3*	0.8	1.5	3	1.7	2.0	3					
Vanguard Russet	1.2	0.8	1.0	3	1.5	2.0	3	1.3	1.5	3		
MSAA311-1	-	1.0	2.0	3								
MSAA678-1	-	1.0	1.5	3								
MSBB008-3	-	1.0	1.5	3								
MSBB029-1Y	-	1.0	2.0	3								
MSBB625-2	0.9*	1.0	1.0	3	0.8	1.0	3					
MSBB634-8	1.2	1.0	1.5	3	1.2	1.5	3	1.5	2.0	3		
MSCC374-1Y	-	1.0	1.5	3								
MSCC542-1P	1.3*	1.0	1.0	3	1.5	2.0	3					

MICHIGAN STATE UNIVERSITY

POTATO BREEDING and GENETICS

SCAD NURSER1, MONICALM RESEARCH CENTER, MI												
	3-YR*	2021	2021	2021	2020	2020	2020	2019	2019	2019		
LINE	AVG.	RATING			RATING	6 WORST	N	RATING	WORST	N		
MSDD372-15	-	1.0	1.0	3								
MSEE054-20	-	1.0	1.5	3								
MSEE163-1	1.0*	1.0	1.0	3	1.0	1.0	3					
MSEE255-1	1.3*	1.0	1.0	3	1.5	1.5	3					
MSFF031-6	-	1.0	1.5	3								
MSFF055-1Y	-	1.0	1.0	3								
MSFF120-2Y	-	1.0	1.5	3								
MSFF142-2Spl	-	1.0	1.5	3								
MSFF198-13PY	-	1.0	1.5	3								
MSZ248-10	1.0*	1.0	1.5	3	1.0	1.5	3					
MSZ416-8RY	1.1	1.0	1.0	3	1.2	1.5	3	1.0	1.5	3		
Pike	1.1	1.0	1.0	3	0.8	1.0	3	1.5	2.0	3		
Dark Red Norland	1.2*	1.2	2.0	3				1.2	2.0	6		
MSAA101-1RR	0.9	1.2	1.5	3	0.8	1.0	3	0.8	1.5	3		
MSBB017-1	1.5*	1.2	1.5	3	1.8	2.5	3					
MSBB058-4	-	1.2	1.5	3								
MSBB308-2P	1.2	1.2	1.5	3	1.2	2.0	3	1.2	1.5	3		
MSBB351-1	1.0*	1.2	1.5	3	0.8	1.5	3					
MSBB626-11	1.0*	1.2	1.5	3	0.8	1.5	3					
MSBB635-14	1.3	1.2	1.5	3	1.7	2.0	3	1.2	1.5	3		
MSDD247-07	-	1.2	1.5	3								
MSDD271-10	-	1.2	1.5	3								
MSEE035-4	-	1.2	1.5	3								
MSEE169-1	1.3*	1.2	1.5	3	1.3	1.5	3					
MSFF008-1	-	1.2	1.5	3								
MSFF030-1WR	-	1.2	1.5	3								
MSFF031-3	-	1.2	1.5	3								
MSZ551-1	1.6	1.2	2.0	3	1.8	2.5	3	1.8	2.0	3		
Petoskey	1.3	1.3	2.0	6	1.3	1.5	3	1.3	2.0	3		
MSAA036-3	-	1.3	2.0	3								
MSAA252-7	1.4*	1.3	2.5	3	1.5	2.0	3					
MSAA392-5Y	-	1.3	1.5	3								
MSBB323-1	-	1.3	1.5	3								
MSBB371-1YSpl	1.4	1.3	2.0	3	1.2	2.0	3	1.8	2.0	3		
MSCC287-1	1.5*	1.3	1.5	3	1.7	2.0	3					
MSDD244-05	-	1.3	2.0	3								
MSEE031-3	1.2*	1.3	2.0	3	1.0	1.0	3					
MSEE074-1	-	1.3	1.5	3								
MSFF211-2	-	1.3	1.5	3								
MSW476-4RY	-	1.3	2.0	3	2.0	2.0	3					
MSX324-2R	1.2	1.3	2.0	3	1.2	1.5	3	1.2	2.0	3		
	± • =	1.0		-			2		2.0	2		

MICHIGAN STATE UNIVERSITY

POTATO BREEDING and GENETICS

	2 VD*	2021			2020				2010	2010
LINE	3-YR* AVG.	2021 RATING	2021	2021 N	2020 RATING	2020	2020	2019 RATING	2019 WORST	2019 N
MSZ109-8PP	1.3*	1.3	1.5	N 3	1.2	1.5	N 3	KATING	WORST	Ν
MSZ109-8FF MSZ218-5	-	1.3	1.5	3	1.2	1.5	3			
MSZ590-1	- 1.1	1.3	1.5	3	0.7	1.0	3	1.3	1.5	3
Lamoka	1.1 1.3	1.5 1.5	2.0	3	0.7 0.8	1.0 1.0	3	1.5 1.5	2.0	3
MSAA127-7PP	1.3 1.7	1.5 1.5	2.0	3	0.8 1.7	2.5	3	1.3	2.0	3
MSAA161-4RY	1.7	1.5	2.0	3	1.7	2.5	3	1.3	1.5	3
MSAA217-3	1.4	1.5	2.0	3	2.3	3.0	3	1.5	1.5	5
MSAA266-1	-	1.5	2.0	3	2.5	5.0	5			
MSAA328-4	- 1.4*	1.5	1.5	3	1.3	1.5	3			
MSBB364-1	1.4	1.5	1.5	3	1.5	2.0	3	1.3	1.5	3
MSCC058-1	1.4*	1.5	2.0	3	1.7	2.0	3	1.5	1.5	5
MSDD376-4	-	1.5	2.0	3	1./	2.0	5			
MSEE075-1Spl	-	1.5	1.5	1						
MSFF002-1	_	1.5	2.5	3						
MSFF035-2	_	1.5	2.0	3						
MSFF142-1P	_	1.5	2.0	3						
MST252-1Y	1.3	1.5	2.0	3	0.8	1.0	3	1.7	2.0	3
MSV179-1	1.5	1.5	1.5	3	1.5	2.5	3	1.5	2.0	2
MSV498-1	1.5	1.5	2.0	3	1.7	2.0	3	1.2	2.0	3
MSZ427-1R	1.0	1.5	2.0	3	0.8	1.0	3	0.7	1.5	3
MSZ615-2	1.4	1.5	2.0	3	1.5	1.5	3	1.2	1.5	3
Bonafide (MSV093-1Y)	1.5	1.7	2.0	3	1.7	2.0	3	1.2	1.5	3
MSAA196-1	1.7*	1.7	2.0	3	1.7	2.5	3	1.2	110	5
MSAA260-3	1.4*	1.7	2.0	3	1.2	1.5	3			
MSBB058-3	-	1.7	2.0	3			-			
MSBB190-2	-	1.7	2.0	3						
MSBB630-2	-	1.7	2.0	3						
MSCC614-1RYSpl	1.7*	1.7	2.0	3	1.7	2.5	3			
MSDD040-01	-	1.7	2.0	3						
MSDD088-1	-	1.7	2.0	3						
MSDD372-07	-	1.7	2.0	3						
MSEE052-5	1.4*	1.7	2.0	3	1.2	1.5	3			
MSEE182-3	1.1*	1.7	3.0	3	0.5	1.0	3			
MSFF305-1RY	-	1.7	2.0	3						
MSX245-2Y	1.8	1.7	2.0	3	1.8	2.0	3	2.0	2.0	3
MSZ042-07	-	1.7	2.0	3						
MSZ263-4	-	1.7	2.0	3						
MSZ513-2	1.6	1.7	2.0	3	1.5	2.0	3	1.7	2.0	3
Huron Chipper	1.7	1.8	2.0	3	1.3	1.5	3	2.0	2.5	3
Mackinaw ^{PVYR, LBR}	1.7	1.8	2.5	3	1.7	2.0	3	1.5	2.0	3
	1.1	1.0	2.5	5			2	1.0	2.0	5

POTATO BREEDING and GENETICS

SCAD NURSERY, MONICALM RESEARCH CENTER, MI												
	3-YR*	2021	2021	2021	2020	2020	2020	2019	2019	2019		
LINE	AVG.	RATINC	6 WORST	Ν	RATING	WORST		RATING	WORST			
MSAA174-1	1.7	1.8	2.5	3	1.7	2.0	3	1.5	1.5	3		
MSBB213-1Spl	1.5	1.8	2.5	3	1.5	1.5	3	1.3	1.5	2		
MSBB230-1	-	1.8	2.0	3								
MSBB343-2Y	-	1.8	2.0	3								
MSCC725-232	1.5*	1.8	2.0	3	1.2	1.5	3					
MSDD107-1Y	-	1.8	2.0	3								
MSDD249-9	-	1.8	2.0	3								
MSDD254-1Spl	-	1.8	2.0	3								
MSEE016-07	-	1.8	2.5	3								
MSFF029-10	-	1.8	2.0	3								
MSFF072-1Y	-	1.8	3.0	3								
MSFF134-1PP	-	1.8	2.0	3								
MSZ242-07	1.4	1.8	2.0	3	1.0	1.5	3	1.3	1.5	3		
MSZ598-2	-	1.8	2.0	3								
Yukon Gold	2.4	1.8	2.5	3	2.5	2.5	1	3.0	3.5	6		
MSAA072-5	-	2.0	3.0	3								
MSBB190-3	-	2.0	2.5	3								
MSBB262-1YSpl	-	2.0	3.0	3								
MSCC302-1	2.0*	2.0	2.5	3	2.0	2.5	3					
MSDD483-1	-	2.0	2.0	3								
MSEE016-10	-	2.0	2.0	3								
MSEE075-1	-	2.0	2.0	2								
MSFF189-1Y	-	2.0	2.0	3								
MSFF191-1Y	-	2.0	2.5	3								
MSFF247-2Y	-	2.0	2.5	3								
MSY544-5R	-	2.0	3.0	3								
MSZ242-13	1.4	2.0	2.0	3	1.2	1.5	3	1.2	1.5	3		
Blackberry	1.6	2.2	3.0	3	1.3	1.5	3	1.2	1.5	3		
MSCC447-1WR	2.0*	2.2	3.0	3	1.8	2.0	3					
MSCC576-1	2.0*	2.2	2.5	3	1.8	2.0	3					
MSDD553-1	-	2.2	2.5	3								
MSEE002-3	-	2.2	2.5	3								
MSEE191-3Y	-	2.2	2.5	3								
MSFF034-4P	-	2.2	4.0	3								
MSV241-2	-	2.2	3.0	3								
MSX156-1Y	2.3	2.2	2.5	3	2.2	2.5	3	2.7	3.0	3		
MSX495-2	-	2.2	3.0	3								
MSZ436-2Spl	1.9	2.2	3.0	3	1.8	2.0	3	1.8	2.0	3		
Reba	2.4	2.2	2.5	3	2.7	3.0	3	2.5	2.5	2		
MSAA091-1	-	2.3	3.0	3								
MSBB075-1Y	2.2*	2.3	3.0	3				2.2	2.5	3		
Reba MSAA091-1	2.4	2.2 2.3	2.5 3.0	3 3				2.5	2.5			

MICHIGAN STATE UNIVERSITY

Send Torislari, morrientin Resenacii centrer, mi											
3-YR*	2021	2021	2021	2020	2020	2020	2019	2019	2019		
AVG.	RATING	WORST	Ν	RATING	WORST	Ν	RATING	WORST	N		
-	2.3	3.0	3								
-	2.5	3.5	3								
-	2.5	3.0	3								
2.3*	2.5	4.0	3	2.0	2.0	3					
-	2.5	3.0	3								
-	2.5	3.5	3								
-	2.5	3.0	3								
-	2.5	3.0	3								
2.6*	2.7	3.0	3	2.5	3.5	3					
-	2.7	3.0	3								
2.0	2.7	3.5	3	2.0	2.5	3	1.3	2.0	3		
2.4	2.7	3.0	3	2.5	3.0	3	2.2	3.0	3		
2.4	2.8	3.5	3	1.9	3.0	6	2.5	2.5	3		
2.8	2.8	3.0	3	2.5	3.0	3	3.0	3.5	3		
-	2.8	3.5	3								
2.4*	2.8	3.5	3	2.0	2.0	3					
2.3*	2.8	3.0	3	1.7	2.0	3					
-	3.0	3.0	3								
2.5*	3.0	3.5	3	2.0	2.5	2					
2.7	3.0	3.5	3	2.4	3.5	6	2.8	3.5	6		
3.2	3.3	4.0	3	2.8	4.0	3	3.3	3.5	3		
-	3.3	4.0	3								
-	3.3	4.0	3								
-	3.5	4.0	3								
	1.6			1.5			1.6				
	3-YR* AVG. - - 2.3* - - 2.6* - 2.6* - 2.6* - 2.6* - 2.6* - 2.4 2.4 2.4 2.8 - 2.4* 2.3* - 2.5* 2.5* 2.7 3.2 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3-YR* 2021 2021 2021 2021 2020 AVG. RATING WORST N RATING - 2.3 3.0 3 - 2.5 3.5 3 - 2.5 3.0 3 - 2.5 3.0 3 - 2.5 3.0 3 - 2.5 3.0 3 - 2.5 3.0 3 - 2.5 3.0 3 - 2.5 3.0 3 - 2.5 3.0 3 - 2.5 3.0 3 - 2.5 3.0 3 2.6* 2.7 3.0 3 2.0 2.7 3.0 3 2.5 - 2.8 3.5 3 1.9 2.8 2.8 3.0 3 1.7 - 2.8 3.5 3 2.0 $2.3*$	3-YR* 2021 2021 2021 2020 2020 AVG. RATING WORST N RATING WORST N RATING WORST - 2.3 3.0 3 . RATING WORST N RATING WORST - 2.5 3.5 3 . . 2.5 3.0 3 - 2.5 3.0 3 . . 2.0 2.0 - 2.5 3.0 3 . . 2.0 . - 2.5 3.0 3 - 2.5 3.0 3 - 2.5 3.0 3 - 2.5 3.0 3 2.5 3.5 - 2.6* 2.7 3.0 3 2.5 3.0 <td>3-YR* 2021 2021 2021 2020 2020 2020 AVG. RATING WORST N RATING WORST N RATING WORST N - 2.3 3.0 3 . RATING WORST N RATING WORST N - 2.5 3.0 3 - 2.5 3.0 3 - 2.5 3.0 3 - 2.5 3.0 3 - 2.5 3.0 3 - 2.5 3.0 3 2.5 3.5 3 . - 2.5 3.0 3 2.5 3.5 3 - 2.6* 2.7 3.0 3 2.5 3.0 3 - 2.0 2.7</td> <td>3-YR* 2021 2021 2021 2020 2020 2020 2019 AVG. RATING WORST N RATING WORST N RATING WORST N RATING - 2.3 3.0 3 . . RATING WORST N RATING - 2.5 3.5 3 . . . RATING - 2.5 3.0 3 2.0 2.0 3 . - 2.5 3.0 3 2.0 2.0 3 . - 2.5 3.0 3 2.0 2.0 3 . - 2.5 3.0 3 2.0 2.5 3 1.3 2.6* 2.7 3.0 3 2.5 3.0 3 2.2 2.4 2.8 3.5 3 1.9 3.0 6 2.5 2.8 3.5 3 2.0 2.0 3 3.0 . - 2.8 3.5 3 2.0 2.0 3 <td< td=""><td>3-YR* 2021 2021 2021 2020 2020 2020 2019 2019 AVG. RATING WORST N RATING WORST N</td></td<></td>	3-YR* 2021 2021 2021 2020 2020 2020 AVG. RATING WORST N RATING WORST N RATING WORST N - 2.3 3.0 3 . RATING WORST N RATING WORST N - 2.5 3.0 3 - 2.5 3.0 3 - 2.5 3.0 3 - 2.5 3.0 3 - 2.5 3.0 3 - 2.5 3.0 3 2.5 3.5 3 . - 2.5 3.0 3 2.5 3.5 3 - 2.6* 2.7 3.0 3 2.5 3.0 3 - 2.0 2.7	3-YR* 2021 2021 2021 2020 2020 2020 2019 AVG. RATING WORST N RATING WORST N RATING WORST N RATING - 2.3 3.0 3 . . RATING WORST N RATING - 2.5 3.5 3 . . . RATING - 2.5 3.0 3 2.0 2.0 3 . - 2.5 3.0 3 2.0 2.0 3 . - 2.5 3.0 3 2.0 2.0 3 . - 2.5 3.0 3 2.0 2.5 3 1.3 2.6* 2.7 3.0 3 2.5 3.0 3 2.2 2.4 2.8 3.5 3 1.9 3.0 6 2.5 2.8 3.5 3 2.0 2.0 3 3.0 . - 2.8 3.5 3 2.0 2.0 3 <td< td=""><td>3-YR* 2021 2021 2021 2020 2020 2020 2019 2019 AVG. RATING WORST N RATING WORST N</td></td<>	3-YR* 2021 2021 2021 2020 2020 2020 2019 2019 AVG. RATING WORST N RATING WORST N		

2019-2021 SCAB DISEASE TRIAL SUMMARY SCAB NURSERY, MONTCALM RESEARCH CENTER , MI

SCAB DISEASE RATING: MSU Scab Nursery plot rating of 0-5; 0: No Infection; 1: Low Infection <5%, no pitted leisions;

3: Intermediate >20%, some pitted leisions (Susceptible, as commonly seen on Atlantic); 5: Highly Susceptible,

>75% coverage and severe pitted leisions.

N = Number of replications.

*2-Year Average.

Table 8

	2021	2021		2021	2021
LINE	RATING	Ν	LINE	RATING	Ν
Sorted by ascending	2021 Ratin	g:			
MSFF132-1R	0.5	1	MSGGUNK-4Spl	1.0	1
MSGG088-4	0.5	1	MSFF292-1	1.5	1
MSGG242-1	0.5	1	MSFF321-1	1.5	1
MSGG242-3	0.5	1	MSFF335-2RR	1.5	1
MSGG267-2	0.5	1	MSGG008-11	1.5	1
MSGG268-4	0.5	1	MSGG041-3	1.5	1
MSGG275-1	0.5	1	MSGG080-4Spl	1.5	1
MSGG282-08	0.5	1	MSGG136-1P	1.5	1
MSGG282-09	0.5	1	MSGG190-3	1.5	1
MSGG349-3	0.5	1	MSGG214-08	1.5	1
MSGG394-1	0.5	1	MSGG221-3	1.5	1
MSGG426-2	0.5	1	MSGG248-1	1.5	1
MSGG445-11	0.5	1	MSGG260-7	1.5	1
MSFF017-1	1.0	1	MSGG275-6	1.5	1
MSFF160-1R	1.0	1	MSGG302-1	1.5	1
MSFF182-1R	1.0	1	MSGG302-3	1.5	1
MSFF223-1RY	1.0	1	MSGG331-3	1.5	1
MSFF334-1Pinto	1.0	1	MSGG356-3	1.5	1
MSFF351-1RR	1.0	1	MSGG409-3	1.5	1
MSGG001-7Y	1.0	1	MSGG436-3	1.5	1
MSGG072-3	1.0	1	MSFF022-2	2.0	1
MSGG087-2PY	1.0	1	MSFF037-17	2.0	1
MSGG158-11PP	1.0	1	MSFF077-4	2.0	1
MSGG186-2	1.0	1	MSFF097-6	2.0	1
MSGG190-1	1.0	1	MSFF134-2RR	2.0	1
MSGG282-07	1.0	1	MSFF149-1	2.0	1
MSGG282-10	1.0	1	MSFF206-1	2.0	1
MSGG282-20	1.0	1	MSFF303-3	2.0	1
MSGG333-1	1.0	1	MSFF338-1PP	2.0	1
MSGG349-2	1.0	1	MSFF353-1R	2.0	1
MSGG380-1	1.0	1	MSGG039-10	2.0	1
MSGG385-1	1.0	1	MSGG039-11	2.0	1
MSGG391-2	1.0	1	MSGG084-1	2.0	1
MSGG398-1	1.0	1	MSGG135-1R	2.0	1
MSGG406-1	1.0	1	MSGG137-1R	2.0	1
MSGG407-2	1.0	1	MSGG147-3P	2.0	1
MSGG409-1 (mini)	1.0	1	MSGG163-1	2.0	1
MSGG409-2	1.0	1	MSGG169-2	2.0	1
MSGG432-2	1.0	1	MSGG178-2	2.0	1

2021 SCAB DISEASE EARLY GENERATION TRIAL SUMMARY SCAB NURSERY, MONTCALM RESEARCH CENTER, MI

	2021	2021		2021	2021
LINE	RATING	Ν	LINE	RATING	Ν
Sorted by ascending	g 2021 Rating	g:			
MSGG194-3	2.0	1	MSGG028-4Y	2.5	1
MSGG195-1	2.0	1	MSGG039-08	2.5	1
MSGG216-1	2.0	1	MSGG068-1	2.5	1
MSGG219-1	2.0	1	MSGG068-2	2.5	1
MSGG247-2	2.0	1	MSGG078-7	2.5	1
MSGG263-1	2.0	1	MSGG108-2RR	2.5	1
MSGG276-4	2.0	1	MSGG127-3R	2.5	1
MSGG289-1	2.0	1	MSGG181-5	2.5	1
MSGG290-1	2.0	1	MSGG190-4	2.5	1
MSGG294-1	2.0	1	MSGG207-1	2.5	1
MSGG320-5	2.0	1	MSGG212-2	2.5	1
MSGG328-3	2.0	1	MSGG212-4	2.5	1
MSGG328-5	2.0	1	MSGG254-3	2.5	1
MSGG343-1	2.0	1	MSGG260-6	2.5	1
MSGG365-1	2.0	1	MSGG030-2	3.0	1
MSGG391-1	2.0	1	MSGG030-3	3.0	1
MSGG415-7	2.0	1	MSGG102-1RR	3.0	1
MSGG433-2	2.0	1	MSGG105-1RP	3.0	1
MSGG437-4	2.0	1	MSGG018-2Y	3.5	1
MSFF335-1RR	2.5	1	MSGG156-12PP	4.0	1
MSFF335-3Pinto	2.5	1			

2021 SCAB DISEASE EARLY GENERATION TRIAL SUMMARY SCAB NURSERY, MONTCALM RESEARCH CENTER, MI

2021 MSU LATE BLIGHT VARIETY TRIAL PLANT PATHOLOGY FARM, LANSING, MI

Line Sort:			RAUDPC Sort:						
		RAUDPC ¹		I	RAUDPC	¹ Pedigrees go	igrees go w/ RAUDPC Sort		
LINE	Ν	MEAN	LINE	Ν	MEAN	Female	Male		
Atlantic	2	39.7	MSBB630-2	3	0.1	Lady Liberty	Kalkaska		
Huron Chipper	3	0.5	MSBB058-3	3	0.2	NY148	MSR127-2		
Lamoka	2	28.6	MSZ551-1	3	0.2	MSM182-1	MSL268-D		
Mackinaw	1	2.1	MSX495-2	2	0.3	MSQ131-A	Kalkaska		
MSAA091-1	3	28.4	MSBB611-3	2	0.4	NY148	MSR128-4Y		
MSAA157-2PY	2	32.0	Huron Chipper	3	0.5	MSQ070-1	MSR156-7		
MSAA196-1	1	0.6	MSAA196-1	1	0.6	MSW151-5	MSQ440-2		
MSAA252-7	3	1.5	MSBB634-8	3	0.6	Lady Liberty	MSR169-8Y		
MSAA309-15	3	41.7	MSZ042-7	1	0.7	ND8331Cb-3	MSQ086-3		
MSAA498-18	1	10.8	MSBB613-7	3	0.9	Saginaw Chipper	McBride		
MSBB058-3	3	0.2	MSBB614-15	3	1.1	Saginaw Chipper	MSR127-2		
MSBB058-4	3	7.7	MSBB635-14	3	1.4	Lady Liberty	MSS297-3		
MSBB213-1Spl	3	12.1	MSAA252-7	3	1.5	NY148	MSQ089-1		
MSBB262-1YSpl	2	53.1	Mackinaw	1	2.1	Saginaw Chipper	Lamoka		
MSBB351-1	2	16.3	MSBB626-11	3	4.3	Saginaw Chipper	Kalkaska		
MSBB611-3	2	0.4	MSBB058-4	3	7.7	NY148	MSR127-2		
MSBB613-7	3	0.9	MSBB625-2	3	8.0	MSW242-1	MSS297-3		
MSBB614-15	3	1.1	MSCC302-1	1	8.2	MST500-1	MSQ086-3		
MSBB625-2	3	8.0	Snowden	3	10.1	Lenape	Wischip		
MSBB626-11	3	4.3	MSX245-2Y	2	10.4	Manistee	McBride		
MSBB630-2	3	0.1	MSAA498-18	1	10.8	MSV092-2	Elkton		
MSBB634-8	3	0.6	MSDD247-11	3	11.4	Mackinaw	MSV383-B		
MSBB635-14	3	1.4	MSX324-1P	2	11.6	MSN105-1	Colonial Purple		
MSCC302-1	1	8.2	MSBB213-1Spl	3	12.1	MSS576-5	Lamoka		
MSCC447-1WR	2	24.0	MSCC553-1R	2	12.4	Red Marker #2	ND7132-1R		
MSCC553-1R	2	12.4	MSZ590-1Spl	2	14.0	Superior	Picasso		
MSCC614-1RYSpl	2	30.4	MSEE247-6WP	2	15.8	MSX148-1WP	MSZ219-46		
MSDD088-1	1	47.1	MSBB351-1	2	16.3	MSS483-1	MSQ440-2		
MSDD247-11	3	11.4	MSCC447-1WR	2	24.0	MSX035-WP	MSQ086-3		
MSDD251-2Y	2	27.1	MSDD251-2Y	2	27.1	Yukon Gem	MSM288-2Y		
MSEE247-6WP	2	15.8	MST252-1Y	3	27.3	MSL024-AY	MSL211-3		
MST252-1Y	3	27.3	MSAA091-1	3	28.4	MSS165-2Y	Lamoka		
MSX156-1Y	3	29.9	Lamoka	2	28.6	NY120	NY115		
MSX245-2Y	2	10.4	MSX156-1Y	3	29.9	MSI005-20Y	Boulder		
MSX324-1P	2	11.6	MSCC614-1RYSpl	2	30.4	Gold Nugget	MSS934-4		
MSX495-2	2	0.3	MSAA157-2PY	2	32.0	Spartan Splash	Purple Heart		
MSY022-2	3	32.5	MSY022-2	3	32.5	MSS176-1	MST096-2Y		
MSZ042-7	1	0.7	Atlantic	2	39.7	Wauseon	Lenape		
MSZ551-1	3	0.2	MSAA309-15	3	41.7	Atlantic	Lamoka		
MSZ590-1Spl	2	14.0	Yukon Gold	1	43.1	W5279-4	Norgleam		
Snowden	3	10.1	MSDD088-1	1	47.1	NY154	MSQ086-3		
Yukon Gold	1	43.1	MSBB262-1YSpl	2	53.1	MSN105-1	MSR241-4RY		
			1						

¹Ratings indicate the average plot RAUDPC (Relative Area Under the Disease Progress Curve). LB Isolate used: US-23

					PERCENT (%)				
		<u>N</u>	UMBEF	R OF SP	OTS PE	R TUB	<u>ER</u>	BRUISE	AVERAGE
ENTRY	SP GR	0	1	2	3	4	5+	FREE	SPOTS/TUBER
ADAPTATION TRL	AL, CHIP-PRO	OCESSIN	G LIN	ES					
Manistee	1.080	8	9	6	1	1	0	32	1.1
Huron Chipper	1.082	10	6	5	3	1	0	40	1.2
MSAA091-1	1.084	5	12	5	3	0	0	20	1.2
MSAA498-18	1.081	7	6	6	5	1	0	28	1.5
MSBB614-15	1.078	5	7	7	6	0	0	20	1.6
Lamoka	1.080	4	9	8	4	1	0	15	1.6
MSBB058-4	1.079	3	11	5	5	1	0	12	1.6
MSY022-2	1.079	5	7	6	4	2	1	20	1.8
FL2137	1.087	4	7	5	5	3	1	16	2.0
MSDD085-13	1.082	0	7	12	6	0	0	0	2.0
MSBB075-1Y	1.078	3	7	6	5	3	1	12	2.0
MSCC725-232	1.075	1	1	8	2	1	0	8	2.1
MSAA311-1	1.076	3	4	8	8	1	1	12	2.1
MSZ242-13	1.093	3	7	6	4	2	3	12	2.2
Mackinaw	1.081	0	5	11	7	2	0	0	2.2
MSBB230-1	1.088	0	8	8	3	6	0	0	2.3
MSW474-1	1.078	2	4	7	6	4	2	8	2.5
MSBB017-1	1.080	1	4	5	10	4	1	4	2.6
Petoskey	1.090	2	3	6	8	4	2	8	2.6
Petoskey (POP)	1.089	1	4	5	9	6	0	4	2.6
Atlantic	1.089	1	4	6	7	2	4	4	2.7
MSAA076-6	1.083	0	4	7	7	5	2	0	2.8
MSBB626-11	1.084	2	5	5	4	3	6	8	2.8
Snowden	1.084	2	3	1	12	3	3	8	2.8
MSDD247-11	1.091	2	5	2	4	7	5	8	3.0
MSAA217-3	1.094	0	0	10	8	1	5	0	3.0
MSZ242-07	1.092	0	2	5	10	4	4	0	3.1
MSDD247-07	1.095	0	2	5	9	5	4	0	3.2
MSAA252-7	1.081	0	2	2	8	6	3	0	3.3
MSBB611-3	1.083	0	1	4	6	5	7	0	3.6
MSAA260-3	1.083	0	1	4	7	5	8	0	3.6
MSBB058-3	1.080	0	1	3	6	4	10	0	3.8
MSBB630-2	1.078	1	3	0	3	3	15	4	4.0
MSCC058-1	1.083	0	1	2	4	8	10	0	4.0
ADAPTATION TRL	AL, TABLEST	OCK LI	NES						
MSBB351-1	1.053	21	4	0	0	0	0	84	0.2
MSDD254-1SPL	1.062	20	5	0	0	0	0	80	0.2
Blackberry	1.062	17	8	1	0	0	0	65	0.4

2021 BLACKSPOT BRUISE SUSCEPTIBILITY TEST SIMULATED BRUISE SAMPLES*

MICHIGAN STATE UNIVERSITY POTATO BREEDING and GENETICS

								PERCENT (%)	
		N	UMBER	OF SPO	OTS PE	R TUB	<u>ER</u>	BRUISE	AVERAGE
ENTRY	SP GR	0	1	2	3	4	5+	FREE	SPOTS/TUBER
MSZ109-08PP	1.064	13	14	0	0	0	0	48	0.5
MSZ416-8RY	1.059	16	8	3	0	0	0	59	0.5
MSZ157-3	1.078	13	11	1	0	0	0	52	0.5
MSBB364-1	1.051	13	10	2	0	0	0	52	0.6
MSZ427-1R	1.066	14	7	4	0	0	0	56	0.6
Yukon Gold	1.076	10	11	2	2	0	0	40	0.8
MSZ513-2	1.074	9	10	4	1	0	0	38	0.9
Superior	1.071	7	11	6	1	0	0	28	1.0
MSV093-1Y	1.078	8	9	5	2	0	0	33	1.0
MSCC553-1R	1.071	7	10	6	2	0	0	28	1.1
MSZ427-3R	1.062	7	9	7	2	0	0	28	1.2
MSBB343-2Y	1.082	8	7	7	3	0	0	32	1.2
MSZ598-2	1.073	7	6	9	1	1	0	29	1.3
MSBB371-1YSPL	1.077	5	11	6	4	0	0	19	1.3
MSZ615-2	1.071	6	8	7	4	0	0	24	1.4
MSAA127-1PP	1.056	4	11	6	4	0	0	16	1.4
MSZ590-1SPL	1.068	7	4	8	5	0	0	29	1.5
MST252-1Y	1.072	3	9	10	1	1	0	13	1.5
MSAA174-1	1.065	4	7	6	4	2	0	17	1.7
MSV179-1	1.064	5	4	7	6	3	0	20	1.9
MSCC447-1WR	1.074	2	4	9	9	1	0	8	2.1
MSZ551-1	1.077	2	5	9	4	4	0	8	2.1
MSAA101-01RR	1.079	0	6	12	3	4	0	0	2.2
MSCC720-1WP	1.081	0	4	11	9	0	0	0	2.2
MSCC302-1	1.079	3	4	4	9	5	0	12	2.4
MSX245-2Y	1.087	1	3	9	8	4	0	4	2.4
MSCC447-01WP	1.076	0	3	1	5	2	2	0	2.9

2021 BLACKSPOT BRUISE SUSCEPTIBILITY TEST SIMULATED BRUISE SAMPLES*

PRELIMINARY TRIAL, CHIP-PROCESSING LINES

MSEE182-3	1.080	13	9	2	1	0	0	52	0.6
MSFF029-10	1.090	10	7	7	1	0	0	40	1.0
MSEE207-2	1.080	2	9	9	4	0	0	8	1.6
MSFF002-1	1.078	0	11	11	1	1	0	0	1.7
MSDD553-1	1.079	3	9	7	5	1	0	12	1.7
MSFF031-3	1.074	2	11	7	2	3	0	8	1.7
Pike	1.083	3	6	9	7	0	0	12	1.8
MSBB029-1Y	1.081	4	6	8	5	1	1	16	1.8
MSDD372-15	1.084	4	6	7	6	2	1	15	2.0
MSEE016-07	1.092	3	3	7	10	0	0	13	2.0
MSFF079-16	1.078	3	5	7	6	4	0	12	2.1

MICHIGAN STATE UNIVERSITY POTATO BREEDING and GENETICS

								PERCENT (%)	
		N	UMBER	OF SP	OTS PE	R TUB	ER	BRUISE	AVERAGE
ENTRY	SP GR	0	1	2	3	4	5+	FREE	SPOTS/TUBER
MSFF072-1Y	1.085	1	6	8	7	3	0	4	2.2
MSEE002-3	1.091	1	4	9	9	1	0	4	2.2
MSFF073-3	1.089	1	5	6	9	2	0	4	2.3
MSEE063-6	1.079	2	4	6	9	0	2	9	2.3
MSFF031-6	1.070	2	6	8	7	3	2	7	2.3
MSBB008-3	1.085	1	4	2	12	2		5	2.5
Atlantic	1.092	1	5	4	12	2	1	4	2.5
Snowden	1.084	0	4	8	11	1	2	0	2.6
MSDD249-9	1.081	0	7	3	10	2	3	0	2.6
MSFF035-2	1.079	1	4	3	11	4	2	4	2.8
MSEE101-2	1.090	1	1	6	10	6	1	4	2.9
MSDD244-05	1.088	0	2	5	10	7	0	0	2.9
MSX495-2	1.079	0	1	2	9	1	1	0	2.9
MSBB190-2	1.081	0	0	5	7	2	3	0	3.2
MSDD372-07	1.093	0	2	6	7	4	6	0	3.2
MSEE031-3	1.086	0	2	1	11	9	1	0	3.3
MSV241-2	1.091	0	1	2	12	7	3	0	3.4
MSDD376-4	1.093	0	3	1	9	5	6	0	3.4
MSEE016-10	1.091	0	0	3	8	9	3	0	3.5
MSEE035-4	1.089	0	0	0	5	8	8	0	4.1
PRELIMINARY TRI	IAL, TABLES'	FOCK L	INES						
MSBB262-1YSpl	1.066	26	1	0	0	0	0	96	0.0
MSFF189-1Y	1.063	22	4	0	0	0	0	85	0.2
MSZ263-4	1.073	19	6	1	0	0	0	73	0.3
MSEE052-5	1.073	19	3	3	0	0	0	76	0.4
MSFF211-2	1.065	17	6	2	0	0	0	68	0.4
MSDD088-1	1.073	14	11	0	0	0	0	56	0.4
MSFF178-1	1.066	13	10	1	0	0	0	54	0.5
MSFF191-1Y	1.068	14	8	3	0	0	0	56	0.6
MSDD251-2Y	1.072	13	9	4	0	0	0	50	0.7
MSBB323-1	1.089	7	14	2	2	0	0	28	1.0
MSCC300-1	1.072	8	11	6	1	0	0	31	1.0
MSFF055-1Y	1.068	9	6	7	3	0	0	36	1.2
MSDD107-1Y	1.075	9	5	8	2	1	0	36	1.2
MSCC512-1PP	1.068	9	5	6	5	0	0	36	1.3
MSFF120-2Y	1.076	7	10	2	4	1	1	28	1.4
MSX137-6	1.074	5	10	4	6	0	0	20	1.4
Reba	1.071	2	11	9	4	0	0	8	1.6
MSEE048-2Y	1.077	3	10	3	6	2	0	13	1.8
MSEE075-1	1.074	2	8	7	3	5	0	8	2.0

2021 BLACKSPOT BRUISE SUSCEPTIBILITY TEST SIMULATED BRUISE SAMPLES*

2021 BLACKSPOT BRUISE SUSCEPTIBILITY TEST	
SIMULATED BRUISE SAMPLES*	

								PERCENT (%)	
		N	UMBER	OF SP	OTS PE	R TUB	ER	BRUISE	AVERAGE
ENTRY	SP GR	0	1	2	3	4	5+	FREE	SPOTS/TUBER
MSZ610-3	1.082	0	1	9	9	5	1	0	2.8
MSBB213-1SPL	1.075	0	3	3	11	6	2	0	3.0
PRELIMINARY TRIA	L, PIGMEN	TED LII	NES						
MSFF134-1PP	1.075	23	1	0	0	0	0	96	0.0
Dark Red Norland	1.063	24	4	1	0	0	0	83	0.2
MSFF034-4P	1.067	10	14	0	0	0	0	42	0.6
MSFF305-1RY	1.066	14	9	2	1			54	0.6
MSFF198-13PY	1.065	12	10	3	0	0	0	48	0.6
MSFF142-2Spl	1.071	8	16	0	1	0	0	32	0.8
MSFF247-2Y	1.069	10	9	6	0	0	0	40	0.8
MSBB308-2P	1.062	9	12	2	2	0	0	36	0.9
MSW476-4RY	1.078	8	8	6	3	0	0	32	1.2
MSEE055-1R	1.074	6	8	7	4	0	0	24	1.4
MSFF200-4PYSPL	1.065	4	9	8	4	0	0	16	1.5
MSFF230-1	1.086	2	12	8	3	0	0	8	1.5
MSAA157-2PY	1.071	3	6	10	4	0	0	13	1.7
MSFF230-2PY	1.077	0	11	9	5	0	0	0	1.8
MSX324-1P	1.086	0	7	8	6	1	0	0	2.0
DIPLOID REPLICATI	ED TRIAL								
MSHH618-01	1.063	20	5	1	0	0	0	77	0.3
MSGG863-A1	1.079	6	10	7	2	0	0	24	1.2
MSHH699-02	1.074	3	10	11	1	0	0	12	1.4
MSHH1056-01	1.074	4	10	4	5	2	0	16	1.6
MSGG653-A2	1.081	4	2	12	7	0	0	16	1.9
MSHH701-01	1.081	2	7	8	4	1	1	9	1.9
Lamoka	1.087	1	9	7	6	2	0	4	2.0
MSEE824-04	1.086	1	6	6	11	1	0	4	2.2
MSEE815-06	1.078	1	5	5	10	3	0	4	2.4
MSGG676-01	1.073	0	4	8	9	3	1	0	2.6
MSHH972-03	1.076	0	4	9	7	2	3	0	2.6
MSHH1037-01	1.076	0	3	11	3	2	6	0	2.9
MSGG623-A2	1.083	0	3	3	3	2	3	0	2.9
MSGG600-06	1.098	0	3	7	6	6	3	0	3.0
Atlantic	1.091	0	1	4	10	10	0	0	3.2
MSGG603-A5	1.078	0	2	5	8	6	4	0	3.2
MSGG685-05	1.071	0	2	3	9	6	5	0	3.4
MSDD829-09	1.07	0	1	4	5	7	8	0	3.7

								PERCENT (%))
		N	UMBER	R OF SP	OTS PE	R TUB	ER	BRUISE	AVERAGE
ENTRY	SP GR	0	1	2	3	4	5+	FREE	SPOTS/TUBER
USPB/SFA TRIAL	CHECK SAMP	LES (No	t bruise	d)					
NY163	1.083	19	5	1	0	0	0	76	0.3
NYOR14Q9-9	1.080	20	4	0	1	0	0	80	0.3
W12078-76	1.092	17	7	1	0	0	0	68	0.4
Lamoka	1.082	13	9	3	0	0	0	52	0.6
MSZ242-13	1.094	15	6	3	1	0	0	60	0.6
MSAFB605-4	1.078	12	11	1	1	0	0	48	0.6
MSW474-1	1.081	14	7	3	1	0	0	56	0.6
Snowden	1.079	13	7	3	1	1	0	52	0.8
NY165	1.081	8	9	6	2	0	0	32	1.1
USPB/SFA TRIAL	BRUISE SAMP	LES							
NY163	1.083	2	5	9	3	5	1	8	2.3
W12078-76	1.092	0	7	6	5	6	1	0	2.5
MSZ242-13	1.094	2	3	5	7	5	3	8	2.8
NYOR14Q9-9	1.080	1	5	3	6	8	2	4	2.8
Lamoka	1.082	1	2	5	7	6	4	4	3.1
MSAFB605-4	1.078	1	1	4	10	5	4	4	3.2
MSW474-1	1.081	0	1	3	3	4	14	0	4.1
NY165	1.081	0	1	1	1	3	19	0	4.5
Snowden	1.079	0	0	0	1	3	21	0	4.8

2021 BLACKSPOT BRUISE SUSCEPTIBILITY TEST SIMULATED BRUISE SAMPLES*

* Thirteen to twenty-five (dependent on the number of replications used) A-size tuber

samples were collected at harvest, held at 50 F at least 12 hours, and placed in a six-sided plywood drum

and tumbled to produce simulated bruising. Samples were abrasive-peeled and scored 10/26/21 (SNAC trial by POP) all other trials 11/11/2021 (PBG).

The table is presented in ascending order of average number of spots per tuber.

2021 On-Farm Potato Variety Trials

Chris Long, Trina VanAtta, Damen Kurzer, Ian Smith, Rory Vindischman, Dr. Dave Douches Cooperator: James DeDecker, (Presque Isle Co.)

INTRODUCTION

Our main objectives for on-farm potato variety trials are to: 1) identify promising lines for further testing and evaluation, 2) conduct larger scale commercial agronomic and processing trials through multi-acre block plantings, and 3) use trial data to encourage the commercialization of new varieties in the state of Michigan. We share our results with growers, breeders, and processors across the country to aid in the development of new varieties. In 2021, we conducted 35 on-farm potato variety trials with 13 growers in 11 counties.

Processing trial cooperators were: 4-L Farms (Kalamazoo), Black Gold Farms (St. Joseph), Hampton Potato Growers (Bay), Lennard Ag. Co. (Branch, St. Joseph), Main Farms (Montcalm), Sandyland Farms (Montcalm), Verbrigghe Farms (Delta), and Walther Farms, Inc. (St. Joseph). We also conducted processing trials at the Michigan State University (MSU) Montcalm Research Center (Montcalm). The Potatoes USA/Snacking Nutrition and Convenience International (SNAC Int.) chip trial was conducted at Sandyland Farms (Montcalm).

Fresh market trial cooperators were: 4-L Farms (Kalamazoo), Elmaple Farms (Kalkaska), Horkey Bros. (Monroe), Jenkins Farms (Kalkaska), Kitchen Farms, Inc. (Antrim), Lennard Ag. Co. (St. Joseph), Styma Potato Farms (Presque Isle), Verbrigghe Farms (Delta), and Walther Farms, Inc. (St. Joseph, Tuscola)

PROCEDURE

A. Processing Variety Trials

We evaluated 82 chip processing varieties in 2021. To evaluate selected processing lines, we used the following check varieties: Altantic, Lamoka, and Snowden. For all trials, we used 10" in-row seed spacing and 34" rows (Table 2).

Most of our processing trials were strip trials. These trials consisted of a single 75' strip for each variety of which we harvested and graded a single 23-ft section. For each variety in the Walther Farms, Inc. trials, we planted three, 15-ft long rows and harvested the center row. We also conducted multi-acre block plantings of promising, non-commercialized trials at Sackett Potatoes, Sandyland Farms, Thorlund Bros., and Walther Farms Three Rivers and Cass City locations. Agronomic production practices for these block plantings varied based on each grower's production system.

B. Processing Variety Trials

We conducted the Potatoes USA/SNAC Int. Trial for Michigan at Sandyland Farms, LCC (Montcalm County). We planted nine varieties in 300' strips and harvested three, 23-ft sections of row for each variety. Our check varieties were 'Lamoka' and 'Snowden'(Tables 3 to 7). For more details on this trial, please reference the 2021 annual report published by Potatoes USA.

C. Fresh Market Trials

Within the fresh market trials, we evaluated 105 primary entries (this does not include entries from Potatoes USA/NFPT trial) which included: 28 russet, 22 red, 39 yellow, 1 novelty, and 15 round white types (Tables 9 and 10). To evaluate selected table-stock lines, we used the following check varieties: <u>Red</u>: Dark Red Norland <u>Round White</u>: Reba, Superior <u>Russet</u>: Russet Norkotah, Silverton Russet <u>Yellow</u>: Yukon Gold We planted all trials with 34" wide rows and 10" in-row seed spacing.

We evaluated the majority of our fresh market trials as strip trials. These trials consisted of a single 60-100' for each variety of which we harvested and graded a single 23-ft section . We planted the NFPT trial at Walther Farms, Inc. as single 15' long strips and harvested the entire strip (Table 11). 2021 was the third year conducting an early generation tablestock variety trial with red skin white flesh and yellow skin potato varieties. This trail was planted and harvested like the NFPT trial, and took place at Walther Farms, Inc (Table 12). We planted Walther Farms, Inc. trials trial with three, 15-ft rows and harvested the middle row. We also conducted multi-acre block plantings of promising, non-commercialized trials at Kitchen Farms and Walther Farms Cass City. Agronomic production practices for these block plantings varied based on each grower's production system.

RESULTS

A. Processing Variety Trial Results

We recorded general descriptions, pedigrees, and scab ratings for all varieties tested in 2021 (Table 1) and evaluated these varieties based on yield, specific gravity, internal quality, common scab ratings, and maturity (Table 2). Below are six superior processing varieties from 2021.

NY165: This Cornell variety was only evaluated at one location in 2021 due to seed availability. It had the third highest yield US#1 yield of 600 cwt/A and a total yield of 662 cwt/A. The size breakdown was 90% A sized tubers, eight percent B sized tubers, and one percent pickouts. The specific gravity was 1.078, slightly below the trial average of 1.080. Internal quality was excellent with no defects observed in 2021. The fresh chip score was 1.0 with a stem end score of 1.4, above the trial average. The vine vigor and vine maturity were consistent with the trial averages, with scores of 3.2 and 2.8, respectively. The tubers had a flattened oval type, darker netted skin, and slightly recessed apical eyes. It will be evaluated in storage as part of the SNAC trial.

CO12293-1W: This Colorado State University variety was evaluated in the Montcalm Research Center Box Bin trial in 2021. It had a very high US#1 yield of 590 cwt/A and high total yield of 668 cwt/A. The tuber size breakdown was consistent with the trial average, with 88% A sized tubers and nine percent B sized tubers. The specific gravity of 1.082 was slightly above the trial average. Internal quality was excellent with no defects observed in 2021. This variety is susceptible to common scab, with a scab rating of 2.5, above the trial average. CO12293-1W had a moderately vigorous vine and full season vine maturity. The tubers were generally uniform with light skin.

NY174: This Cornell variety was evaluated at four locations in 2021. It had a very high US#1 and total yield of 568 cwt/A and 629 cwt/A, respectively. It had a high percentage of A sized tubers and few pickouts. The specific gravity of 1.086 was above the trial average of 1.080. The fresh chip score and stem end defect score were both below the trial average with good chip quality observed. The tubers had a flattened oval type with thin skin. The vine type was larger than average with a mid-season maturity. It will be evaluated in storage at the Montcalm Research Center during the 2021-2022 storage season.

MSW474-1: This Michigan State University variety was evaluated at 13 locations in 2021. It had an above average yield of 493 cwt/A and total yield of 580 cwt/A. There were slightly more B sized tubers than average, 14%. Specific gravity was 1.081, slightly above the trial average. Internal quality was excellent, no defects were observed in 2021. The fresh chip color score of 1.5 was acceptable, and the stem end defect score of 0.4 was below the trial average. This variety has a moderately vigorous vine and mid-season vine maturity. The tubers had darker heavy netted skin and deeper apical eyes. Some sticky stolons were observed. It will be evaluated in storage at the Montcalm Research Center during the 2021-2022 storage season.

MSAA260-3: This Michigan State University variety was evaluated at two locations in 2021. It had an above average US#1 yield of 484 cwt/A and total yield of 533 cwt/A. It had 90% A sized tubers. Eight percent each of vascular discoloration, internal brown spot, and brown center were observed in 2021. The specific gravity of 1.081 was slightly above the trial average. Chip color and stem end defect ratings were both acceptable. This variety had slightly more common scab susceptibility than average, 1.3 vs 1.1. Vine maturity was slightly earlier than average. The tubers were uniform with a blocky round type.

MSAFB609-12: This Michigan State University variety had an average US#1 and total yield in 2021 when evaluated at ten locations. The tuber size profile was consistent with the trial average, and the specific gravity of 1.082 was slightly higher than average. Internal quality was excellent, with no internal defects observed. Fresh chip score, stem end defect score, and common scab ratings were all consistent with the trial average. The plant produced medium sized vines and had a mid-season maturity. The tubers were uniform and round with light this skin. Some points were observed. This variety will be evaluated in storage at the Montcalm Research Center during the 2021-2022 storage season.

B. Potatoes USA/SNAC Int. Chip Trial

In 2021, we conducted the Potatoes USA / SNAC Int. Michigan chip trial at Sandyland Farms, LLC in Montcalm County. We compared yield, size distribution, and specific gravity of seven test varieties to Lamoka and Snowden (Table 3). We also evaluated at-harvest raw tuber quality (Table 4) and sent samples to Herr Foods, Inc. (Nottingham, PA) where potatoes were processed and scored for out of the field chip quality (Table 5). We assessed blackspot bruise susceptibility (Table 6) and conducted pre-harvest panels for each variety (Tables 7A and B).

The varieties with the highest US#1 yields were NY165, MSAFB605-4, and MSW474-1, with yields ranging from 532 cwt/A to 600 cwt/A. MSAFB605-4 also had the highest percent of US #1 tubers at 92%, while MSW474-1 had the lowest at 86%. The average specific gravity of the trial was 1.081 (Table 3). W12078-76 has the highest incidence of internal defects, with 27% hollow heart, three percent vascular discoloration, and 17% brown center. NYOR14Q9-9 had 10% hollow heart, higher than the trial average of four percent (Table 4). Samples collected on October 13th were processed by Herr's Foods, Inc. on October 18th. NY163 was ranked first by Herr's and has a SFA color of 2 and 3.4% internal defects. W12078-76 was also ranked highly, with a SNAC color of 2 and six percent total defects. NYOR14Q9-9 was ranked last with a SFA color of 3, 35% total defects, stem end defects, edge color, and scab (Table 5). Black spot bruise assessments demonstrated that NY163, W12078-76, and MSZ242-13 were most resistant to black spot bruising, while NY165 and Snowden were most susceptible (Table 6).

C. Fresh Market and Variety Trial Results

We recorded general descriptions, pedigrees, and scab ratings for all fresh market varieties evaluated in 2021 (Table 8) and assessed these varieties based on yield, specific gravity, internal quality, common scab ratings, and maturity (Tables 9 and 10). The NFPT and Early Generation Tablestock trials screen potato selections under initial evaluation. In 2021, 56 NFPT-designated russet varieties and an additional 14 russet selections were evaluated (Table 11). Continued evaluation of these varieties are determined based on national performance. In total, 60 red skin potato varieties from Cornell University, University of Maine, Michigan State University, Colorado State University, Texas A & M University, and North Dakota State University potato breeding programs were grown in Michigan. Of these, 16 varieties were chosen for continued evaluation in Michigan (Table 12). They were be grown in 15-foot plots in 2022. Below are top performing russet, yellow, red, white, and novelty fresh pack varieties.

Russets

AF6377-13: This University of Maine variety was evaluated for the first time in 2021 at only one location due to seed availability. It had the fifth highest yield in 2021 with 436 cwt/A US#1 tubers and 78% US#1 tubers. It had a slightly larger tuber size profile than average, with 21% oversize tubers. AF6377-13 had an above average specific gravity of 1.080, clean internals excluding 20% brown center, and no common scab. It had an attractive tuber shape with dark russet skin.

W13A11229-1RUS: This variety had the seventh highest US#1 yield of 403 cwt/A at ten locations. It had a light russet skin type and 75% US#1 tubers, higher than the trial average of 73%. This medium maturing variety had a moderately vigorous vine type and a common scab rating of 0.6. It had a specific gravity of 1.083, above the trial average of 1.073.

W13A11229-1RUS had 12% hollow heart and seven percent vascular discoloration in 2021.

A08433-4sto: This Aberdeen, Idaho variety also had a high total yield of 529 cwt/A with 79% US #1 tubers. It had an above average specific gravity of 1.080 and a common scab rating of 0.6. This full season variety had a moderately vigorous vine, and moderate hollow heart. This variety had an oblong to long flattened tuber type. A08433-4sto has multiple disease resistances including PVY, *Verticillium* Wilt, Early Blight, and tuber Late Blight.

CO10085-1RUS: This Colorado State University selection had an average yield of 344 cwt/A US#1 tubers and a total yield of 471 cwt/A. It had a very high specific gravity of 1.084 and good internal quality. This full season variety had a common scab score of 0.9. Prominent eyes were observed in these oblong tubers. This variety will be observed at seven locations in 2021 and bulk plantings will be conducted in 2022.

Yellow Flesh

Columba: This yellow-fleshed variety had the highest total and US#1 trial yield of 670 and 601 cwt/A, respectively. It produced 90% A-sized tubers and had a lower specific gravity of 1.052. Internal quality was very good with seven percent vascular discoloration and two percent internal brown spot observed. Columba was an earlier maturing variety with a score of 1.6. This variety had a common scab rating of 0.3, and medium yellow flesh. It had smooth, waxy skin, but did not have a consistently uniform tuber type. Some heat sprouts were observed in 2021, likely due to early maturity and delayed harvest.

Danina: This variety has a consistent attractive appearance with a smooth skin finish and medium yellow flesh. With a US#1 yield of 504 and total yield of 610 cwt/A, this variety produced 83% US#1 tubers. It had an average rating for skin waxiness and higher rating for yellow flesh color. It had a slightly later vine maturity than the trial average. Danina had good internal quality with three percent hollow heart and six percent vascular discoloration, both of which are at the trial average.

MSV093-1Y (Bonafide): This Michigan State University selection had a high yield of 523 cwt/A in 2021 with 92% US#1 potatoes. MSV093-1Y had a higher-than-average proportion of A-sized tubers and a consistent shape. It had a specific gravity of 1.069, slightly higher than the trial average of 1.067. It had a larger vine type and a full season vine maturity. It had excellent internal quality, with no defects observed across seven locations.

Goldfinger: This variety was first evaluated in 2021 and was grown at four locations. It had a US #1 yield of 470 cwt/A with 75% US #1 tubers. It had smooth waxy skin and bright appearance. Some heat sprouts were observed, likely due to the earlier vine maturity and delayed harvest in some trials. At 1.053, it had a lower-than-average specific gravity, and a common scab rating of 0.8. Goldfinger had one percent vascular discoloration, five percent internal brown spot, and three percent brown center.

Red Skin

NDAF113484B-1: This North Dakota selection was the second highest yielding variety in the 2021 red skin potato trial with a US #1 yield of 459 cwt/A and a total yield of 528 cwt/A. It was evaluated at five locations in 2021 and had 87% US #1 tubers. NDAF113484B-1 had a specific gravity of 1.063, slightly lower than the trial average of 1.067. It had good internal quality with defects at or below four percent. This mid-season variety had a common scab rating of 0.5. The tubers had an attractive skin color, a round type, and deeper eyes.

NDA050237B-1R: This variety had the highest US #1 yield of 482 cwt/A and a specific gravity of 1.062. Its internal quality was generally good with ten percent vascular discoloration and one percent brown center. This variety had an oval tuber type with uniform skin color and slight skinning. It had a late season maturity and moderately vigorous vine. Skin color was a deep, attractive red, and was moderately waxy. Slight sticky stolons were observed, likely due to full season maturity requirements.

CO99076-6R: This early maturing Colorado variety produced attractive, uniform tubers with deep red skin. It had a US #1 yield of 411 cwt/A, above the trial average of 320 cwt/A. CO99076-6R had a larger size profile with only eight percent B size tubers. It had good internal quality with 12% vascular discoloration when observed at five locations in 2021. Skin color and skin color uniformity were both rated above average.

Canada Rose (CO00277-2R): This Colorado State University selection had excellent skin color but a variable tuber shape in 2021. It had an above average US#1 yield of 371 cwt/A and total yield of 438 cwt/A. Fourteen percent vascular discoloration was observed in 2021, as well as a scab score of 1.2, above the trial average. Canada Rose had a smaller vine type and earlier vine maturity. It will be further evaluated in 2022 as seed availability only allowed for one trial location in 2021.

Round White

Volare: This variety had the highest yield in 2021with 679 cwt/A US#1 tubers and a total yield of 741 cwt/A. It produced 91% A-sized tubers, significantly higher than the trial average. It had an attractive type and skin, with an above average skin waxiness rating. However, when evaluated at two locations, it had a high percentage of internal defects, including ten percent hollow heart, 15% vascular discoloration, 35% internal brown spot, and five percent brown center. Further evaluation will determine if the defects persist across years or if Volare is able to grow successfully in Michigan.

NYQ112-5: This Cornell University selection had an average yield of 493cwt/A US#1 tubers and 587 cwt/A total yield, both above the trial average. This variety produced 83% A-sized tubers, which were round with thin skin. It had good internal quality with only seven percent vascular discoloration. This variety had a larger vine size and mid to full season vine maturity. It had smooth skin with a higher-than-average waxiness rating.

NDAF102629C-4: This variety was evaluated at six locations in Michigan in 2021. It produced larger tubers, with 90% A-sized tubers and an average yield of 385 cwt/A US #1 tubers. It had good internal quality with three percent or less of internal defects. The specific gravity of 1.070 was above the trial average. This variety had a very large vine type and mid-season vine maturity. NDAF102629C-4 had a round tuber type and moderately deep apical eyes.

Ashley: When evaluated at four locations in 2021 this variety had a bright appearance and thin skin, with an above average waxiness rating. It had an average US#1 yield of 380 cwt/A and total yield of 468 cwt/A. The size profile was consistent with the trial average, with 18% B-sized tubers and 88% A-sized tubers. Fifteen percent vascular discoloration was observed in 2021, higher than the trial average. The common scab rating was 0.8, consistent with the trial average in 2021.

Novelty

Blackberry: This Michigan State University selection had purple skin and flesh, and an above average yield of 481 cwt/A US #1 tubers. It produced 75% A sized tubers and 22% B sized tubers. Blackberry had no internal defects but was only evaluated at three locations in 2021. The purple skin was a uniform dark color, but severe silver scurf was observed. Some tubers had chimeral eyes with white pigmentation, while most other tubers had consistent purple skin. This variety was also evaluated as a processing variety in the 2021 Box Bin trial, where it will undergo monthly storage sampling to determine chip quality.

Table 1. 2021 Chip Processing Variety Descriptions

Entry	Pedigree	2021 Scab Rating*	Characteristics
Atlantic	Wauseon x B5141-6 (Lenape)	1.6	Above average yield, high percentage A- sized tubers, below average specific gravity, high incidence hollow heart
Betty	SunRain	1.7	Low yield, smaller tuber size profile, good internal quality, average stem end defect
Blackberry (MSZ109-10PP)	COMN07- W112BG1 x MSU200-5PP	2.0	Average yield, purple skin and flesh, smaller size profile, lower specific gravity, good internal quality
Corsica	Parkland Seed Potatoes	1.0	Very low yield, smaller size profile, high specific gravity, thin skin, light yellow flesh
Kelly	SunRain	1.1	Average yield, very long shape, higher incidence pickouts and misshapen tubers, average specific gravity
Lady Liberty (NY152)	B38-14 x Marcy	0.9	Above average yield, lower specific gravity, good internal quality, attractive round type, light netted skin
Lamoka (NY139)	NY120 x NY115	0.7	Below average yield, flattened oval type, average specific gravity, good internal quality, bright thin skin
Mackinaw (MSX540-4)	Saginaw Chipper x Lamoka	0.7	Above average yield, good internal quality, deeper apical eyes, flattened oval type
Petoskey (MSV030-4)	Beacon Chipper x MSG227-2	0.7	Below average yield, heavy netted skin, round type, above average specific gravity

(2021 Processing varieties cont.)

Entry	Pedigree	2021 Scab Rating*	Characteristics
Snowden (W855)	B5141-6 x Wischip	1.0	Average yield, early maturity, mid-season storage, reconditions well in storage, medium to high specific gravity
AC11494-6W	A05158-3C x 00-3115-11	0.8	Very low specific gravity, smaller size profile, lower yield, good internal quality, round blocky type
AF6526-3	Pike x AF5040-8	1.0	Smaller size profile and lower yield, very high specific gravity, large vigorous vine, inconsistent tuber type
AF6526-7	Pike x AF5040-8	2.5	Bright appearance, moderate common scab, poor fresh chip quality, high proportion A- sized tubers, average yield
AF6527-3	Pike x MSH228-6	1.0	Very high specific gravity, good fresh chip quality, good internal quality, flattened oval tuber type
AF6543-2	MSR061-1 x MSH228-6	1.5	Very high incidence of hollow heart, large vine type, low yield, average specific gravity
AF6550-2	NDAF102629C-4 x AF5040-8	2.5	Good internal quality, high specific gravity, moderate common scab, below average yield, light netted skin
AF6582-1	AF2376-5 x WAF10192-3	2.0	Oval flattened type, moderate common scab, above average yield, smaller tuber size profile, good internal quality

(2021 Processing varieties cont.)

(ing varieties cont.)	0004	
Entry	Pedigree	2021 Scab Rating*	Characteristics
AF6598-6	MSM171-A x Lamoka	1.5	Poor fresh chip quality, good internal quality, blocky type, above average yield, below average specific gravity
AF6603-5	NY121 x MSR127-2	2.0	Deeper apical eyes, moderate common scat and stem end defect, high specific gravity, above average yield
BNC718-1	Peter Wilcox x Chieftain	1.0	High percentage A-sized tubers and high yield, low specific gravity, moderate vascular discoloration, moderate stem end defect
BNC811-22	NC308-2 x Atlantic	1.8	Smaller tuber size profile, average specific gravity, severe hollow heart, below average yield
BNC816-3	Lamoka x NC41-1	1.0	Excellent internal quality, pointed tubers, average yield, below average tuber size profile, deeper eyes
BNC821-9	NC41-1 x NC182-5	1.5	Above average yield, moderate hollow heart poor appearance, high percentage A sized tubers
CO11037-5W	BC0894-2W x Nicolet	0.3	Oval type, variable shape, earlier vine maturity, below average yield, higher percentage pickouts
CO12235-3W	AC00206-2W x AC03433-1W	0.2	Thin skin, bright appearance, smaller type, good internal quality, full season maturity, below average specific gravity

(2021 Processi	ng varieties cont.)		
Entry	Pedigree	2021 Scab Rating*	Characteristics
CO12293-1W	CO02024-9W x ND7519-1	2.5	High yield, good internal quality, moderate common scab, uniform type, light skin, full season maturity
COOR13270-2	Winterset x CO02024-9W	1.5	Lowest yield in 2021, very small tuber size profile, even split of A and B sized tubers, above average specific gravity, good interna quality
COTX12235-2W	AC00206-2W x AC03433-1W	0.7	Smaller size profile, below average specific gravity, earlier vine maturity, some pear shaped tubers
MSAA311-1	Elkton x Atlantic	1.2	Heavy netted skin, deeper eyes, average yield, below average specific gravity, moderate hollow heart
MSAA076-4	MSR127-2 x MSS297-3	1.0	High total yield but smaller size profile with many B sized tubers, good internal quality, high specific gravity, earlier vine maturity
MSAA076-6	MSR127-2 x MSS297-3	1.2	Deeper eyes, light netted skin, moderate internal brown spots, above average yield, blocky round type
MSAA217-3	Beacon Chipper x Atlantic	1.5	Severe hollow heart, very high specific gravity, full season maturity, attractive roun uniform type
MSAA232-4	Lamoka x Manistee	0.0	Non uniform type, light netted skin, above average yield, high specific gravity, severe hollow heart

(2021 Processing varieties cont.)

		2021	
Entry	Pedigree	Scab Rating*	Characteristics
MSAA252-7	NY148 x MSQ089-1	1.2	Highest yield in 2021, deeper eyes, large blocky type, moderate vascular discoloration average specific gravity
MSAA260-3	MSQ086-3 x Atlantic	1.3	Uniform round type, average yield and specific gravity, moderate internal defects, earlier vine maturity
MSAA309-15	Atlantic x Lamoka	0.8	Slight skinning, moderate growth crack, below average yield, large vine type, earlier vine maturity
MSAA328-4	Boulder x MSR169- 8Y	0.5	Very low yield, excellent internal quality, above average specific gravity, good fresh chip quality
MSAA570-3	MSV313-1 x Lamoka	0.6	Larger flattened type, high yield, average specific gravity, higher incidence pickouts
MSAFB605-4	NY148 x MSV241-2	2.0	Very high yield, attractive blocky round type, moderate common scab, good fresh chip quality, below average specific gravity
MSAFB609-12	NY148 x MSQ086-3	1.4	Light thin skin, trace pointed tubers, average yield and specific gravity, excellent internal quality, moderate vine type
MSAFB635-15	NYH15-5 x MSS297-3	1.0	Round type, average yield, smaller size profile, higher specific gravity, medium nette skin

Entry	ing Varieties cont.) Pedigree	2021 Scab Rating*	Characteristics
MSBB012-1Y	Beacon Chipper x MSR169-8Y	0.0	Blocky round type, below average yield, very low specific gravity, marginal fresh chip quality
MSBB047-1	Lamoka x MST096-2Y	0.0	Moderate stem end defect, below average specific gravity, average yield, thin skin, earlier vine maturity
MSBB058-1	NY148 x MSR127-2	1.5	Small round type, very high specific gravity, excellent internal quality, moderate vine type
MSBB058-3	NY148 x MSR127-2	0.5	Very high yield, low specific gravity, moderate vascular discoloration, full seasor maturity
MSBB079-2	MSS927-1 x MSR127-2	0.3	Average yield and specific gravity, good fresh chip quality, excellent internal quality, variable skin finish
MSBB221-1	Snowden x MSQ086-3	0.0	Medium netted skin, slight growth crack, above average yield, below average specific gravity, excellent internal quality
MSBB230-1	NY148 x MSQ089-1	2.5	Uniform blocky type, smaller size profile, below average yield, high specific gravity, severe common scab
MSBB230-2	NY148 x MSQ089-1	0.0	High yield, average specific gravity, exceller internal quality, uniform type, sticky stolons, smaller vine type
MSBB610-13	NY148 x MST096- 2Y	0.8	Bright thin skin, average specific gravity, marginal fresh chip score, excellent interna quality, below average yield

Entry	Pedigree	2021 Scab Rating*	Characteristics
MSBB614-15	Saginaw Chipper x MSR127-2	0.7	Heavy netted skin, blocky oval type, below average yield, moderate hollow heart and vascular discoloration
MSBB625-2	MSW242-1 x MSS297-3	1.0	Moderate skinning and heat sprouting, above average yield and specific gravity, severe internal brown spot
MSBB626-11	Saginaw Chipper x Kalkaska	1.1	Deeper eyes, round type, average yield and specific gravity, moderate hollow heart, moderate vine type
MSBB634-8	Lady Liberty x MSR169-8Y	0.6	Blocky round type, slight skinning, below average yield and specific gravity, smaller vine type
MSBB635-14	Lady Liberty x MSS297-3	1.5	Severe sticky stolons, compressed shape, above average yield, severe vascular discoloration, below average specific gravity
MSCC058-1	MSK061-4 x Manistee	1.0	Average yield, severe vascular discoloration, round type, trace growth crack, average specific gravity
MSCC248-2	Saginaw Chipper x Elkton	0.0	Significant growth crack and alligator hide, below average yield and specific gravity, excellent internal quality
MSCC376-01	MSR127-2 x Manistee	0.2	Heavy netted skin, consistent size profile, below average yield, average specific gravity, excellent internal quality

(2021 Processing Varieties cont.)

Entry	Pedigree	2021 Scab Rating*	Characteristics
MSDD085-13	NY148 x MSR127-2	1.2	Smaller size profile, flattened tuber type, average specific gravity, good fresh chip quality, good internal quality
MSDD271-11	AF4648-2 x MSR127-2	0.0	Flat oval type, prominent eyes, below average yield, low specific gravity, moderate stem end defect
MSW474-1	MSN190-2 x MSP516-A	0.6	Darker netted skin, deeper eyes, high yield, average specific gravity, excellent internal quality
MSY022-2	MSS176-1 x MST096-2Y	0.7	Inconsistent shape, larger type, above average yield, mid-season maturity, marginal fresh chip quality
MSZ242-07	MSR169-8Y x MSU383-A	0.5	Slight shatter bruise, below average yield, very high specific gravity, excellent internal quality, low stem end defect incidence
MSZ242-13	MSR169-8Y x MSU383-A	0.5	Large blocky round type, above average yield, very high specific gravity, slight growth crack
NDTX112203AB- 1W		2.0	Bright skin, less uniform type, below average yield and specific gravity, smaller size profile, full season maturity
NDTX113030C-3W	Dakota Diamond x ND7212-1	0.5	Less uniform type, smaller size profile, lower yield and specific gravity, moderate hollow heart, full season maturity

(2021	Processing	Varieties cont.)
(2021	I TOUCOSING	

Entry	Pedigree	2021 Scab Rating*	Characteristics
NDTX14362AB-1W	ND102809AB-2 x ND028984B-1	0.5	Very high yield, low specific gravity, excellent internal quality, uniform round type, thin light skin, full season vine maturity
NY163 (L7-2)	NYE50-8 x NYE48-2	0.8	Average yield, above average specific gravity, thinner light skin, pink eyes, good fresh chip quality
NY165 (M8-5)	NY148 x NYF48-4	1.3	Very high yield, average specific gravity, good fresh chip quality, darker netted skin, deeper apical eyes
NY168	NY148 x E48-2	1.5	Above average yield and specific gravity, moderate skinning, purple pigmentation around eyes, mid-season maturity
NY172 (Q29-1)	Lady Liberty x F31-3	1.3	Blocky oval type, slight sticky stolons, high yield, below average specific gravity, moderate hollow heart, early vine maturity
NY173 (Q38-4)	J110-12 x F31-3	1.3	Light skin, deeper eyes, slight hollow heart and vascular discoloration, above average yield, very early vine maturity
NY174	NY148 x E48-2	0.9	Very high yield and specific gravity, excellen internal quality, flat oval type, thin skin, mid- season maturity
NYOR14Q9-9	Eva x H25-4	2.0	High yield, average specific gravity, moderate hollow heart, full season maturity, flattened oval type

(2021 Processing Varieties Cont.)

Entry	Pedigree	2021 Scab Rating*	Characteristics
NYR101-2	Snowden x E48-2	1.1	Below average yield, average specific gravity, very early vine maturity, large vine type, light skin, less uniform type
NYR1-7	Andover x Lady Liberty	1.2	High yield and specific gravity, moderate internal brown spots, earlier vine maturity, trace alligator hide
NYR3-5	Andover x NY154	0.8	Blocky oval type, high specific gravity, moderate hollow heart, large vine type, above average yield
TX17846-1W	CO07070-10W x NDTX091908AB- 2W	0.0	Smaller size profile, lower yield, marginal fresh chip quality, thin skin, bright appearance, moderate vascular discoloratio
W12078-76	Hodag x Lelah	0.8	Average yield, high specific gravity, moderate hollow heart, uniform round type, medium netted skin
WAF16107-2	MSX540-4 x Tundra	2.0	Below average yield, very high specific gravity, moderate hollow heart, earlier vine maturity

*Scab rating based on 0-5 scale; 0 = most resistant and 5 = most susceptible. Common scab data provided by Potato Outreach Program. Line descriptions provided by various potato breeding programs and updated by Potato Outreach Program following evaluations at various trial locations throughout Michigan.

Table 2. 2021 Michigan Statewide Chip Processing Potato Variety TrialsOverall Averages - Thirteen Locations

	CW	/T/A		PERC	ENT OF TO	DTAL ¹		_	_	R/	AW TUBER	QUALITY ⁴ (%)	_				
LINE	US#1	TOTAL	US#1	Bs	As	ov	РО	SP GR ²	OTF CHIP SCORE ³	нн	VD	IBS	BC	COMMON SCAB RATING ⁵	SED SCORE ⁶	VINE VIGOR ⁷	VINE MATURITY ⁸	COMMENTS
MSAA252-7 ^{bdh}	706	734	97	3	85	12	0	1.079	1.3	0	23	0	0	1.2	0.5	3.2	2.8	deeper eyes, larger blocky round type
MSAFB605-4 ⁱ	600	652	92	8	92	0	0	1.073	1.0	0	0	0	0	2.0	0.6	2.5	3.5	med to heavy netted skin, nice blocky round type, uniform, sl skinning
NY165 ⁱ	600	662	91	8	91	0	1	1.078	1.0	0	0	0	0	1.3	1.4	5.0	3.0	flat oval type, darker netted skin, sl deep apical eyes
CO12293-1W ^h	590	668	88	9	88	0	3	1.082	1.0	0	0	0	0	2.5	0.6	3.0	4.0	generally uniform, light skin
NY174 ^{adhl}	568	629	90	7	89	1	3	1.086	1.1	0	0	0	0	0.9	0.4	3.9	3.4	flat oval type, thin skin
MSAA570-3 ^{bl}	561	628	88	4	87	1	8	1.081	1.3	7	0	0	2	0.6	0.5	2.8	2.8	large flattened type, sheep nose
MSBB058-3 ^{bck}	539	563	96	4	95	1	0	1.075	2.0	0	20	0	0	0.5	0.9	2.7	4.7	medium netted skin, slight skinning
NDTX14362AB-1W ^k	532	605	88	11	88	0	1	1.069	1.5	0	0	0	0	0.5	0.3	3.5	4.0	uniform round type, thin light skin
Lady Liberty ^{abcdefghkl}	525	587	89	10	89	0	1	1.077	1.2	0	5	1	0	0.9	0.4	3.3	3.1	smaller uniform round type, light netted skin
BNC718-1 ^{ek}	524	561	94	3	93	1	3	1.067	1.5	5	15	0	0	1.0	1.3	2.5	1.8	purple skin, light yellow flesh, round type
BNC821-9 ^{ek}	521	565	93	2	88	5	5	1.076	1.3	15	0	0	0	1.5	0.7	2.8	4.0	poor appearance, larger type
Mackinaw ^{abcdefghjklm}	513	556	92	6	91	1	2	1.084	1.5	0	4	0	0	0.7	0.6	3.5	3.0	slightly flattened round to oval type, deeper apical eyes
NY168 ^{bl}	504	612	83	16	83	0	1	1.086	1.0	2	0	0	0	1.5	0.9	3.5	3.3	moderate skinning, purple pigment around eyes
MSBB230-2 ^a	503	533	94	5	94	0	1	1.079	1.5	0	0	0	0	0.0	1.3	2.5	3.0	uniform, round to oval blocky type, sticky stolens, good appearance
NYOR14Q9-9 ⁱ	495	554	90	10	89	1	0	1.080	1.0	10	3	0	3	2.0	1.0	3.5	4.0	pitted scab lesions, flat oval type, med netted skin
MSW474-1 ^{abcdefghijklm}	493	580	85	14	85	0	1	1.081	1.5	0	0	0	0	0.6	0.4	3.6	3.5	deeper apical eyes, darker heavy netted skin, slight sticky stolons
MSY022-2 ^{cekl}	493	535	92	6	92	0	2	1.075	1.1	3	8	3	1	0.7	0.7	3.2	3.0	inconsistent shape, larger type, thinner skin
NYR1-7 ^{adegl}	493	540	90	10	90	0	0	1.084	1.2	2	0	7	0	1.2	0.5	3.4	2.5	trace alligator hide, oval type, lighter skin
AF6598-6 ^g	490	529	92	6	91	1	2	1.078	2.5	0	0	0	0	1.5	1.1	5.0	2.5	blocky type, oval type, light netted skin
MSBB635-14 ^h	488	558	87	11	87	0	2	1.076	1.0	0	30	0	0	1.5	0.0	2.5	3.5	severe sticky stolons, compressed shape
MSAA217-3 ^h	486	543	90	10	90	0	0	1.096	1.0	40	0	0	0	1.5	0.7	4.0	4.0	nice uniform round to oval type, trace skinning
MSAA260-3 ^{hl}	484	533	91	7	90	1	2	1.081	1.0	0	8	8	8	1.3	0.5	3.5	2.8	uniform round blocky type
AF6603-5 ^g	484	532	91	8	91	0	1	1.089	1.0	0	0	0	0	2.0	1.1	5.0	2.0	deeper apial eyes, slight sticky solons
Blackberry ^h	479	622	77	22	77	0	1	1.063	1.0	0	0	0	0	2.0	1.1	2.5	4.0	dark purple skin with some white eyes, moderate silver scurf
MSAA076-6 ^{agh}	474	548	86	13	86	0	1	1.086	1.0	0	7	20	3	1.2	0.5	3.7	3.2	deep apical eyes, light netted skin, blocky round type
Kelly ^{abdfl}	474	656	71	13	30 71	0	11	1.080	1.2	4	10	0	0	1.2	0.7	3.5	3.2	long shape, severe knobs and misshapen tubers
MSZ242-13 ^{adfghijl}	466	505	92	4	91	1	4	1.095	1.7	4 0	10	2	0	0.5	0.6	3.8	3.2	large round blocky type, slight growth crack and knobs
NY173 ^{hl}	465	593	78	21	78	0	4	1.035	1.3	8	7	0	0	1.3	0.0	4.2	1.3	light skin, slight deep apical eyes
MSAA232-4ª	463	595	92	5	78 91	1	3	1.079	1.5	40	0	0	0	0.0	0.7	2.5	3.0	non uniform, light netted thin skin, slight deep eyes and eyebrows
AF6582-1 ^g	463	536	86	13	86	0	1	1.090	1.0	0	0	0	0	2.0	0.8	5.0	1.5	oval flattened type, light netted skin
MSBB625-2 ^{bel}	461	529	87	9	87	0	4	1.084	1.0	3	10	54	0	1.0	0.1	3.4	3.1	moderate skinning, heat sprouts and knobs
Atlantic ^{bcek}	401	486	92	3 7	92	0	4	1.085 1.079	1.7	38	3	13	0	1.6	0.5	3.4 3.4	2.9	blocky oval type, deep apical yes
NY172 ^{afhl}	443	495	92 90	8	90	0	2	1.075	1.4	22	0	0	0	1.3	0.3	3.4	2.9	
MSA311-1 ^{kl}	443	495	90	7	90	0	3	1.070	1.7	18	7	2	0	1.3	1.0	3.3	2.2	oval blocky type, slight sticky stolons heavy netted skin, deeper apical eyes, blocky type
MSBB221-1 ^d	441	490	90 91	7	90 90	1	2	1.072	1.5	10	0	2	0	0.0	0.4	5.0	5.0	medium netted skin, slight growth crack, nice round type
Lamoka ^{adfgilm}	441	484	91 92	6	90 88	4	2	1.078	1.5	0	3	0	0	0.0 0.7	0.4 0.9	4.0	2.5	
NY163 ^{abcdefghijklm}	438 437	508	92 85	12	85	4	2	1.082	1.5	0	3 2	0	0	0.7	0.9	3.5	2.5	flattened oval type, trace points, bright thin skin
NYR3-5 ^{agh}						-				-		0	-					thinner light skin, pink eyes, attractive chips, trace points
W12078-76 ^{abcdefghilkm}	436	470	93	5	93	0	2	1.085	1.8	5	0	0	0	0.8	0.6	4.3	2.8	blocky oval type, deep apical yes
MSBB079-2 ^{dh}	430	477	91	8	90	1	1	1.085	1.3	19	3	1	4	0.8	0.4	3.5	2.7	uniform round type, attractive, medium netted skin
Snowden ^{adfghilm}	425 423	463 475	92 89	7 10	92 87	0 2	1 1	1.079 1.083	1.0	0	0 17	0 4	0 1	0.3	0.3	3.3 3.9	3.3 2.5	variable skin finish, attractive shape
									1.2	6		-		1.0	0.3			deeper eyes, slight skinning, blocky type
BNC816-3 ^{ek} MSAFB609-12 ^{acdefghjkl}	422	506	83	14	83	0	3	1.068	1.0	0	0	0	0	1.0	0.6	4.3	2.8	many pointed tubers, slight deep eyes
	418	476	88	11	88	0	1	1.082	1.4	0	0	0	0	1.4	0.5	3.2	3.1	light thin skin, trace points, uniform round type
MSAFB635-15 ^h	417	502	83	17	83	0	0	1.093	1.0	0	0	0	0	1.0	0.1	3.0	3.0	medium netted skin, round uniform type
MSCC058-01 ^{cdfhl}	414	445	93	6	91	2	1	1.079	1.3	11	31	4	3	1.0	0.4	3.1	3.0	round appearance, trace growth crack
MSBB047-1 ^a	414	443	93	4	93	0	3	1.074	1.5	0	0	70	0	0.0	1.5	3.0	2.5	round to oval blocky type, thin light netted skin
MSBB626-11 ^{hl}	406	442	92	7	91	1	1	1.081	1.5	12	0	2	0	1.1	1.0	3.5	3.5	deeper eyes, round type

	cv	VT/A		PERC	CENT OF TO	OTAL ¹				R	AW TUBER	QUALITY⁴	(%)	_				
LINE	US#1	TOTAL	US#1	Bs	As	ov	РО	SP GR ²	OTF CHIP SCORE ³	нн	VD	IBS	BC	COMMON SCAB RATING ⁵	SED SCORE ⁶	VINE VIGOR ⁷	VINE MATURITY ⁸	COMMENTS
AF6526-7 ^g	398	424	94	4	94	0	2	1.086	2.0	10	0	0	0	2.5	0.4	5.0	1.5	bright appearance, thin skin, blocky oval type
MSBB610-13 ^{abcegmk}	393	421	93	6	89	4	1	1.078	1.8	0	0	0	0	0.8	0.4	2.9	2.8	attractive round type, bright thin skin
MSBB614-15 ^{dhl}	388	429	90	7	88	2	3	1.079	1.2	11	13	0	3	0.7	0.3	4.0	2.9	heavy netted skin, blocky oval type
MSAA076-04 ^h	380	501	76	23	76	0	1	1.086	1.0	0	0	0	0	1.0	0.3	3.0	2.5	uniform heavy netted skin, nice appearance
WAF16107-2 ^g	378	428	88	9	88	0	3	1.088	1.5	30	0	0	0	2.0	0.4	4.0	1.5	round to oval blocky type, medium netted skin
MSDD271-11 ^d	371	417	89	6	89	0	5	1.064	1.5	0	0	0	0	0.0	0.9	4.0	4.0	non uniform, flat oval type, prominent eyes
MSBB058-1 ^h	370	446	83	16	83	0	1	1.096	1.0	0	0	0	0	1.5	0.1	3.0	3.0	small round type
MSCC376-01 ^{cdh}	370	401	92	4	91	1	4	1.081	1.3	0	0	0	0	0.2	0.5	3.2	2.7	hravy netted skin, consistent size, slight skinning
CO11037-5W ^{dfh}	368	469	80	8	80	0	12	1.076	1.0	3	0	7	0	0.3	0.4	3.3	2.7	oval type, variable shape, heat knobs
AC11494-6W ^{dlf}	353	454	77	22	77	0	1	1.066	1.8	6	0	0	0	0.8	0.4	3.2	2.7	round blocky type, medium netted skin, slight sticky stolons
MSZ242-07 ^{ah}	342	393	87	6	87	0	7	1.093	1.5	0	0	0	0	0.5	0.2	3.0	3.0	growth crack in pickouts, slight shatter bruise
BNC811-22 ^{ek}	340	466	73	23	73	0	4	1.080	2.0	35	0	0	5	1.8	0.6	4.8	3.8	smaller size profile, medium netted skin, oval type
CO12235-3W ^{adf}	340	402	85	12	85	0	3	1.072	1.5	0	0	3	0	0.2	0.4	4.5	3.7	thin skin, bright appearance, smaller type
AF6550-2 ^g	334	389	86	12	86	Ō	2	1.090	1.5	0	0	0	0	2.5	0.8	4.5	1.5	light netted skin, oval type
NDTX113030C-3W ^k	333	432	77	22	77	0	1	1.069	1.0	20	0	0	0	0.5	0.4	3.5	4.5	less uniform type
Petoskey ^{abcdefghlm}	332	390	85	10	85	0	5	1.084	1.3	2	2	0	0	0.7	0.7	3.6	3.2	heavy netted skin, round type, slight growth crack and knobs
AF6543-2 ^g	308	366	84	16	84	0	0	1.079	1.5	50	0	0	10	1.5	0.2	5.0	1.5	oval blocky type, slight netting, less uniform type
NYR101-2 ^{ahl}	301	475	62	36	62	0	2	1.082	1.2	2	2	0	0	1.1	0.4	4.4	1.6	light skin, less uniform type
AF6526-3 ^g	285	360	80	19	78	2	1	1.089	1.0	0	0	0	10	1.0	0.8	4.5	1.5	less uniform type, medium netted skin
MSAA309-15 ^{dg}	284	320	88	10	88	0	2	1.080	1.3	0	0	0	5	0.8	0.4	4.5	2.5	slight skinning, moderate growth crack
MSCC248-2 ^a	279	359	78	5	78	0	17	1.073	2.0	0	0	0	0	0.0	1.3	2.0	2.5	significant growth crack and alligator hide, not uniform, some shatter bruise
MSBB012-1Y ^k	276	313	88	9	88	0	3	1.066	2.0	0	0	0	0	0.0	0.5	3.0	4.0	blocky, round type, trace pear shapes, med netted skin
MSBB230-1 ^h	273	346	79	21	79	0	0	1.090	1.0	0	0	0	0	2.5	0.1	4.0	2.5	small uniform round blocky type, medium netted skin
MSBB634-8 ^{hl}	265	303	87	12	87	0	1	1.074	1.3	0	7	2	7	0.6	0.9	2.3	2.8	blocky round type, slight sheep nose
AF6527-3 ^g	260	300	87	10	87	0	3	1.092	1.0	0	0	0	0	1.0	0.3	5.0	1.5	flat oval tuber type, medium netted skin
MSDD085-13 ^{hkl}	247	353	68	31	68	0	1	1.078	1.0	3	0	0	0	1.2	0.4	3.4	2.0	smaller size profile, flattened round type
NDTX112203AB-1W ^k	243	352	69	25	69	0	6	1.063	1.0	0	0	0	0	2.0	0.6	4.0	4.0	bright, slight knobs and growth crack, less uniform type
COTX12235-2W ¹	216	416	52	46	52	0	2	1.069	1.5	3	0	0	0	0.7	0.4	3.0	2.5	smaller size profile, pears and points
MSAA328-4 ^h	198	213	93	7	93	0	0	1.084	1.0	0	0	0	0	0.5	0.0	5.0	2.0	less uniform blocky oval tuber type
Betty ^{bcl}	197	343	57	41	57	0	2	1.078	1.2	0	0	1	0	1.7	0.7	4.0	1.8	less uniform type, inconsistent skin finish
Corsica ^{ck}	190	354	55	22	55	0	23	1.074	2.5	0	0	0	0	1.0	1.1	3.0	3.3	thinner netted skin, severe knobs, light yellow flesh
TX17846-1W ^k	167	273	61	36	61	0	3	1.074	2.0	0	10	0	0	0.0	0.6	4.0	2.5	thin skin, bright appearance, nice
COOR13270-2 ^h	162	335	48	50	48	0	2	1.085	1.0	0	0	0	0	1.5	0.6	2.5	3.5	non uniform tuber type, inconsistent skin
MEAN	412	482	85	13	84	1	3	1.080	1.3	6	3	3	1	1.1	0.6	3.6	2.9	

³OUT OF THE FIELD CHIP COLOR SCORE

(SNAC Scale)

Ratings: 1 - 5

1: Excellent

5: Poor

2021 Chip Variety Trial Sites

^a4-L Farms, Storage Trial
 ^bBlack Gold Farms, Fresh Trial
 ^cHampton Potato Growers, Storage Trial
 ^eLennard Ag. Co., Storage Trial
 ^eLennard Ag. Co., Storage Trial
 ^eMain Farms, Storage Trial
 ^eMain Farms, Storage Trial
 ⁱSandyland Farms SNAC Replicated Storage Trial
 ⁱSandyland Farms, Set 1 Storage Trial
 ⁱWalther Farms, Fresh Trial
 ⁱWalther Farms, Fresh Chip Trial

<u>1</u>SIZE Bs: < 1 7/8" As: 1 7/8" - 3 1/4" OV: > 3 1/4" PO: Pickouts

⁶ SED (STEM END DEFECT) SCORE

0: No stem end defect 1: Trace stem end defect 2: Slight stem end defect 3: Moderate stem end defect 4: Severe stem end defect 5: Extreme stem end defect

⁷VINE VIGOR RATING

Date: Variable Rating 1-5 1: Slow emergence 5: Early emergence (vigorous vines, some flowering)

²SPECIFIC GRAVITY

Data not replicated

<u>ARAW TUBER QUALITY</u> (percent of tubers out of 10)

HH: Hollow Heart VD: Vascular Discoloration IBS: Internal Brown Spot BC: Brown Center

⁵COMMON SCAB RATING

0.0: Complete absence of surface or pitted lesions
1.0: Presence of surface lesions
2.0: Pitted lesions on tubers, though coverage is low
3.0: Pitted lesions common on tubers
4.0: Pitted lesions severe on tubers
5.0: More than 50% of tuber surface area covered in pitted lesions

⁸VINE MATURITY RATING

Date: Variable Rating 1-5 1: Early (vines completely dead) 5: Late (vigorous vines, some flowering)

	Yield	(cwt/A)		Percen	t Size Distr	ibution		_
								Specifi
Entry	US#1	TOTAL	US#1	Small	Mid-Size	Large	Culls	Gravity
NY165	600 ^a	662	91	8	91	0	1	1.078
MSAFB605-4	600 ^a	652	92	8	92	0	0	1.073
MSW474-1	532 ^b	621	86	13	86	0	1	1.080
MSZ242-13	519 ^{bc}	557	93	5	92	1	2	1.093
NY163	511 ^{bc}	563	91	8	91	0	1	1.083
W12078-76	503 ^{bc}	571	89	10	89	0	1	1.086
NYOR14Q9-9	495 ^{bc}	554	90	10	89	1	0	1.080
Snowden	480 ^c	536	90	10	90	0	0	1.079
Lamoka	438 ^d	494	89	9	89	0	2	1.079
MEAN	520	579	90	9	90	0	1	1.081
ANOVA p-value	<.0001	<.0001	<.0001	<.0001	<.0001	0.0184	0.0364	<.0001
LSD	38.8	42.3	1.7	1.4	1.7	0.6	1.2	0.002

*small <1 7/8"; mid-size 1 7/8"-3 1/4"; large >3 1/4"

Table 4.	At-Harvest Tuber Quality.	Sandylan	d Farms, Ho	oward Cit	y, <mark>Michiga</mark> n.
			Raw Tuber	Quality ¹ (%	6)
	Entry	нн	VD	IBS	BC
	NY165	0	0	0	0
	MSAFB605-4	0	0	0	0
	MSW474-1	3	0	0	0
	MSZ242-13	0	0	0	0
	NY163	0	0	0	0
	W12078-76	27	3	0	17
	NYOR14Q9-9	10	3	0	3
	Snowden	0	3	0	3
	Lamoka	0	0	0	0
	MEAN	4	1	0	3
	ANOVA P-value	<0.0001	0.6488		0.1888
	LSD	4.7	-	-	-

¹Internal Defects. HH = hollow heart, VD = vascular discoloration, IBS = internal brown spot, BC = brown center.

		SNAC ²	Specific	Perce	nt Chip Def	ects ³
Rank	Entry	Color	Gravity	Internal	External	Total
1	NY163	2.0	1.080	3.4	0.0	3.4
2	W12078-76	2.0	1.086	0.9	5.1	6.0
3	MSZ242-13	3.0	1.092	14.5	7.3	21.8
4	NY165	3.0	1.076	21.2	12.7	33.9
5	Snowden	2.0	1.084	10.4	0.8	11.2
6	MSAFB605-4	3.0	1.075	19.3	9.4	28.7
7	Lamoka	2.0	1.079	18.0	13.8	31.8
8	MSW474-1	3.0	1.080	21.6	20.9	42.5
9	NYOR14Q9-9	3.0	1.082	18.6	16.4	35.0

¹ Samples collected October 13th and processed by Herr Foods, Inc., Nottingham, PA on October 18th 2021

²SNAC Color: 1 = lightest, 5 = darkest

³Percent Chip Defects are a percentage by weight of the total sample; comprised of undesirable color, greening, internal defects and external defects Lines are sorted by Herr's ranking: 1(best) to 9 (worst)

					1	A. (Check Sa	amples ¹					B.	Si	nul	ated Bru	ise Samp	oles ²
	-							Percent	Average	-							Percent	Average
	# of	Bru	ises	Pe	r Tu	ber	Total	Bruise	Bruises Per	# o	fBr	uise	s Pe	er Tu	ıber	Total	Bruise	Bruises Pe
Entry	0	1	2	3	4	5	Tubers	Free	Tuber	0	1	2	3	4	5	Tubers	Free	Tuber
NY163	19	5	1	0	0	0		76	0.3	2	5	9	3	5	1		8	2.3
W12078-76	17	7	1	0	0	0		68	0.4	0	7	6	5	6	1		0	2.5
MSZ242-13	15	6	3	1	0	0		60	0.6	2	3	5	7	5	3		8	2.8
NYOR14Q9-9	20	4	0	1	0	0		80	0.3	1	5	3	6	8	2		4	2.8
Lamoka	13	9	3	0	0	0		52	0.6	1	2	5	7	6	4		4	3.1
MSAFB605-4	12	11	1	1	0	0		48	0.6	1	1	4	10	5	4		4	3.2
MSW474-1	14	7	3	1	0	0		56	0.6	0	1	3	3	4	14		0	4.1
NY165	8	9	6	2	0	0		32	1.1	0	1	1	1	3	19		0	4.5
Snowden	13	7	3	1	1	0		52	0.8	0	0	0	1	3	21		0	4.8

²Tuber samples collected at harvest, held at 50°F for 12 hours, then placed in a 6 sided plywood drum and rotated 10 times to produce simulated bruising. They were then held at room temperature for later abrasive peeling and scoring.

	Specific	Glucose ¹	Sucrose ²	Ca	nopy	Average Tuber
Entry	Gravity	%	Rating	Rating ³	Uniform. ⁴	Weight
NY165	1.089	0.002	0.684	100	100	3.18
MSAFB605-4	1.079	0.009	0.125	100	100	3.77
MSW474-1	1.083	0.004	0.471	75	100	2.45
MSZ242-13	1.092	0.002	1.471	100	100	4.54
NY163	1.082	0.009	0.882	75	100	3.30
W12078-76	1.085	0.000	2.279	50	100	3.05
NYOR14Q9-9	1.081	0.008	1.690	75	100	4.12
· · · · · · · · · · · · · · · · · · ·	1.083	0.005	0.907	75	100	3.62
Snowden	1.000					
Snowden Lamoka Table 7B. Pre-Harves	1.089			100 D		
Lamoka Table 7B. Pre-Harves	1.089 t Panel for the 20 Specific	O21 SNAC T	rial at Sandy Sucrose ²	land Farm Ca	s, Taken on nopy	9/1/2021 Average Tuber
Lamoka Table 7B. Pre-Harves Entry	1.089 t Panel for the 20 Specific Gravity	021 SNAC Ti Glucose ¹ %	rial at Sandy Sucrose ² Rating	rland Farm Ca Rating ³	s, Taken on nopy Uniform. ⁴	9/1/2021 Average Tuber Weigh
Lamoka Table 7B. Pre-Harves Entry NY165	1.089 t Panel for the 20 Specific Gravity 1.081	O21 SNAC To Glucose ¹ % 0.004	rial at Sandy Sucrose ² Rating 0.520	rland Farm Ca Rating ³ 75	s, Taken on nopy Uniform. ⁴ 100	9/1/2021 Average Tuber Weigh 4.73
Lamoka Table 7B. Pre-Harves Entry NY165 MSAFB605-4	1.089 t Panel for the 20 Specific Gravity 1.081 1.078	Glucose ¹ % 0.004 0.003	rial at Sandy Sucrose ² Rating 0.520 0.181	rland Farm Ca Rating ³ 75 75	s, Taken on nopy Uniform. ⁴ 100 100	9/1/2021 Average Tuber Weigh 4.73 4.71
Lamoka Table 7B. Pre-Harves Entry NY165 MSAFB605-4 MSW474-1	1.089 t Panel for the 20 Specific Gravity 1.081 1.078 1.081	Contemporation Contemporatin Contemporation Contemporation Contemporation Contemp	rial at Sandy Sucrose ² Rating 0.520 0.181 0.366	rland Farm Ca Rating ³ 75 75 75 75	s, Taken on nopy Uniform. ⁴ 100 100 100	9/1/2021 Average Tuber Weigh 4.73 4.71 5.19
Lamoka Table 7B. Pre-Harves Entry NY165 MSAFB605-4 MSW474-1 MSZ242-13	1.089 t Panel for the 20 Specific Gravity 1.081 1.078 1.081 1.094	Clucose ¹ % 0.004 0.003 0.004 0.004 0.008	rial at Sandy Sucrose ² Rating 0.520 0.181 0.366 0.628	rland Farm Ca Rating ³ 75 75 75 75 100	s, Taken on nopy <u>Uniform.⁴</u> 100 100 75	9/1/2021 Average Tuber Weigh 4.73 4.71 5.19 5.51
Lamoka Table 7B. Pre-Harves Entry NY165 MSAFB605-4 MSW474-1 MSZ242-13 NY163	1.089 t Panel for the 20 Specific Gravity 1.081 1.078 1.081 1.094 1.083	Clucose ¹ % 0.004 0.003 0.004 0.008 0.008 0.003	rial at Sandy Sucrose ² Rating 0.520 0.181 0.366 0.628 0.374	rland Farm Ca Rating ³ 75 75 75 75 100 75	s, Taken on nopy Uniform. ⁴ 100 100 75 75 75	9/1/2021 Average Tuber Weigh 4.73 4.71 5.19 5.51 4.13
Lamoka Table 7B. Pre-Harves Entry NY165 MSAFB605-4 MSW474-1 MSZ242-13 NY163 W12078-76	1.089 t Panel for the 20 Specific Gravity 1.081 1.081 1.094 1.083 1.092	Clucose ¹ % 0.004 0.003 0.004 0.003 0.004 0.008 0.003 0.005	rial at Sandy Sucrose ² Rating 0.520 0.181 0.366 0.628 0.374 0.993	rland Farm Ca Rating ³ 75 75 75 75 100 75 50	s, Taken on nopy <u>Uniform.⁴</u> 100 100 100 75 75 75 75	9/1/2021 Average Tuber Weigh 4.73 4.71 5.19 5.51 4.13 4.51
Lamoka Table 7B. Pre-Harves Entry NY165 MSAFB605-4 MSW474-1 MSZ242-13 NY163 W12078-76 NYOR14Q9-9	1.089 t Panel for the 20 Specific Gravity 1.081 1.081 1.081 1.094 1.083 1.092 1.080	Clucose ¹ % 0.004 0.003 0.004 0.003 0.004 0.008 0.003 0.005 0.003	rial at Sandy Sucrose ² Rating 0.520 0.181 0.366 0.628 0.374 0.993 0.677	rland Farm Ca Rating ³ 75 75 75 75 100 75 50 75	s, Taken on nopy Uniform. ⁴ 100 100 75 75 75 75 75 75	9/1/2021 Average Tuber Weigh 4.73 4.71 5.19 5.51 4.13 4.51 3.45
Lamoka Table 7B. Pre-Harves Entry NY165 MSAFB605-4 MSW474-1 MSZ242-13 NY163 W12078-76	1.089 t Panel for the 20 Specific Gravity 1.081 1.081 1.094 1.083 1.092	Clucose ¹ % 0.004 0.003 0.004 0.003 0.004 0.008 0.003 0.005	rial at Sandy Sucrose ² Rating 0.520 0.181 0.366 0.628 0.374 0.993	rland Farm Ca Rating ³ 75 75 75 75 100 75 50	s, Taken on nopy <u>Uniform.⁴</u> 100 100 100 75 75 75 75	9/1/2021 Average Tuber Weigh 4.73 4.71 5.19 5.51 4.13 4.51

4 The Canopy Uniformity is a percentage of how uniform the foliage health is at the date of observation.

5 The Average Tuber Weight is the total tuber weight collected, divided by the number of tubers reported in ounces.

Table 8. 2021 Russet and Tablestock Variety Descriptions

Entry	Pedigree	2021 Scab Rating*	Characteristics
Burbank SEL	Unknown	0.5	A selection of Russet Burbank, average US#1 yield due to smaller size profile, average specific gravity, less common scab susceptibility, severe bottlenecking
Goldrush	ND450-3Rus x Lemhi Russet	0.0	Average yield and specific gravity, good internal quality, no common scab observed in 2021, heavy dark russet skin
Lakeview Russet (W9433-1Rus)	Calwhite x A96023-6	0.9	Above average yield, larger size profile, flattened oblong type, mid-season vine maturity, good internal quality
Libero	AR 98-0813 x Innovator	1.0	Very poor emergence, early vine maturity, smaller tuber size profile with mainly B sized tubers
Ranger Russet (A7411-2)	Butte x A6595-3	1.8	Inconsistent tuber shape, slight sticky stolons, common scab susceptibility, moderate vascular discoloration, smaller tuber size profile
Reveille Russet (ATX91137-1Rus)	Bannock Russet x A83343-12	0.1	Growth crack in pickouts, attractive skin finish, good internal quality, smaller vine type, larger tuber size profile with higher proportion oversize tubers
Russet Norkotah	ND9526-4Rus x ND9687-5Rus	0.4	Check variety, moderate skinning, misshapen pickouts, moderate hollow heart, below average specific gravity

Russet Variety Descriptions

(2021 Russet Varieties cont.)

Entry	Pedigree	2021 Scab Rating*	Characteristics
Silverton Russet (AC83064-6)	A76147-2 x A7875-5	0.3	Check variety, slight alligator hide, slight skinning, below average specific gravity, higher proportion oversize tubers
Tiger	HZPC	0.9	Variable skin finish and tuber shape, moderate hollow heart, mid-season maturity, smaller tuber size profile
Vanguard (TX08352-5RUS)	TXA549-1Ru x AOTX98137-1Ru	0.1	Moderate alligator hide, attractive skin, below average specific gravity, smaller vine type, above average yield
A06030-23	Premier Russet x A99113-6	0.5	Nice appearance, severe growth cracks in pickouts, moderate hollow heart and vascular discoloration, below average yield and specific gravity
A08433-4STO	A02611-1 x AOND95249-1	0.6	Flattened blocky oval tuber type, above average specific gravity, moderate hollow heart, above average yield
A09119-4LB	A00472-20LB x Premier Russet	1.1	Light russet skin, average specific gravity, below average yield, moderate vascular discoloration, mid-season vine maturity
A10071-1	Targhee Russet x AO02183-2	0.4	Uniform type, darker russet skin, prominent eyes, below average specific gravity, larger vine type, average yield
A11737-1LB	A96814-65LB x A05084-11	1.0	Darker russet skin, misshapen pickouts, earlier vine maturity, average specific gravity, below average yield, excellent internal quality

(2021 Russet Varieties cont.)

Entry	Pedigree	2021 Scab Rating*	Characteristics
A12114-7	A06665-10LB x A01025-4	0.4	Smaller tuber size profile, longer tubular shape, average specific gravity, below average yield, good internal quality
AC12080-4RU	A05084-1 x ND028673B-2Russ	1.0	Moderate alligator hide, inconsistent skin finish, very low specific gravity, below average yield
AC12090-3RU	A05124-3LB x A06021-1T	0.5	Dark russet skin, poor appearance, very low specific gravity, mid-season maturity, below average yield
AF5735-8	AF3317-15 x AF4342-3	1.0	Smaller long tubular type, very low specific gravity, excellent internal quality, smaller tuber size profile with high proportion B sized tubers
AF5762-8	AF4320-17 x Dakota Trailblazer	0.0	Darker russet skin, blocky shape, attractive type, high specific gravity, moderate vascula discoloration, above average yield
AF6296-3	A8469-5 x Dakota Trailblazer	2.0	Light russet skin, some misshapen tubers, average specific gravity, higher proportion pickouts
AF6298-2	A8469-5 x Gemstar Russet	1.5	Lighter russet skin, less uniform type, high specific gravity, smaller vine type, moderate hollow heart and internal brown spot, average yield
AF6340-6	Caribou Russet x Russet Norkotah	1.0	Inconsistent skin finish, attractive tuber type very high yield, low specific gravity, higher proportion oversize tubers

(2021 Russet Varieties cont.)

(202777400007			
Entry	Pedigree	2021 Scab Rating*	Characteristics
AF6377-13	A03921-2 x Gemstar Russet	0.0	Moderate skinning, darker russet skin, high specific gravity, moderate brown center, very high yield
AOR10063-2	A98345-1 x Alpine Russet	1.0	Highest russet yield in 2021, flattened tubers, misshapen pickouts, severe vascular discoloration moderate internal brown spot, larger vine type
CO10085-1RUS	AC03364-5RU x Silverton Russet	0.9	Attractive appearance, prominent eyes, very high specific gravity, average yield, mid- season maturity, misshapen pickouts
CO12378-1RU	CO06035-3RU x AO02183-2	0.2	Heavy russet skin, slight growth crack, moderate hollow heart, very low yield, smaller tuber size profile
COTX08063-2RU	Premier Russet x A99073-1	1.0	Vanguard type, attractive skin finish, above average specific gravity, below average yield, earlier vine maturity
W13A11229-1RUS	A01325-1 x A06131-19	0.6	Lighter russet skin, attractive type, above average specific gravity and yield, moderate hollow heart, mid-season vine maturity

* Scab rating based on 0-5 scale; 0 = most resistant and 5 = most susceptible. Common scab data provided by Potato Outreach Program. Line descriptions provided by potato breeding programs and updated by Potato Outreach Program following evaluations at trial locations throughout Michigan.

2021 Yellow Flesh Variety Descriptions

Entry	Pedigree	2021 Scab Rating*	Characteristics
Albertine	SunRain	1.5	Above average yield, high percentage A sized tubers, below average specific gravity, points and pear shapes in pickouts, moderate common scab susceptibility
Allora	Apart x Borwina	0.9	Light skin netting, some pointed tubers, high yield, average specific gravity, good internal quality, medium sized vine
Ballerina	Parkland Seed Potatoes	0.5	Buff skin, below average yield, smaller size profile, excellent internal quality, larger vine type, earlier vine maturity
Cascada	Solara x Gala	0.6	Smaller tuber type, average total yield, good internal quality, lighter yellow flesh, medium vine maturity
Celandine	Franceline x RZ-84- 2521	0.3	Very low yield, smaller tuber size profile with mainly B-sized tubers, good internal quality, light yellow skin, bright waxy flesh
Christel	Norkia America	0.9	Above average yield, good internal quality, average common scab rating, darker yellow flesh, oblong tuber type
Columba	Carerra x Agata	0.3	Highest yield in 2021, uniform type, bright appearance, moderate heat sprouts, very low specific gravity, lighter yellow flesh
Constance	Marabel x AR93- 1243	0.9	Average yield, smooth appearance, flattened type, waxy yellow skin, medium yellow flesh color

Entry	Pedigree	2021 Scab Score*	Characteristics
Corinna	E 99/89/130 x B 02/245/36	0.5	Lightly netted skin, moderate growth cracks above average yield and consistent tuber size profile, very low specific gravity
Danina	SunRain	1.0	Very high yield, blocky type, buff skin, darke yellow flesh color, good internal quality, moderately vigorous vine
Erika	Marabel x AR 88- 156	1.0	Smooth skin, attractive appearance, smalle tuber size profile with mainly B sized tubers average specific gravity
Excellency	Lady Olympia x Red One	0.8	Less uniform tuber type, good internal quality, above average specific gravity, belo average yield
Floridana	SunRain	0.6	Above average yield, larger tuber size, inconsistent tuber type, smooth waxy skin
Golden Globe (US 624-95)	Berber x 2.6 720-86	0.4	Uniform type, thin light skin, above average yield, good internal quality, average specific gravity
Goldfinger	Exquisa x Monalisa	0.8	Smooth skin, trace heat sprouts, high yield lower specific gravity, good internal quality waxy skin
Gourmandine	Charlotte x Estima	0.6	Longer flattened tuber type, smaller tuber size profile with mainly B sized tubers, moderate internal brown spot

Entry	Pedigree	2021 Scab Score*	Characteristics
Honey Ryder	SunRain	0.6	Attractive appearance, average yield, good internal quality, full season vine maturity, trace heat sprouts
Mary Ann	Norkia America	1.4	Bright skin, pointed tubers, below average yield with high proportion B sized tubers, good internal quality, moderate common scab, waxy skin and dark yellow flesh
Melody	VE74-45 x W72-22- 496	0.5	Average yield, high proportion A sized tubers, average specific gravity, moderate internal brown spot, netted skin, growth cra in pickouts
Montana	E 99/73/126 x E 99/89/130	0.8	Very low specific gravity, above average yield, good internal quality, full-season vin maturity, oblong type, smooth skin
Nectar	Famosa x Red Cara	1.0	Light netted skin, pink blushing around eye high yield, above average specific gravity moderate hollow heart, vascular discoloration, and internal brown spot
Paroli (24 205-06)	569 102-99 x 774 105-99	0.5	Attractive waxy skin, larger vine type, goo internal quality, above average yield potential, lower specific gravity.
Prada	Solanum Int.	0.6	Large type, above average yield, lower specific gravity, earlier vine maturity, prominent eyes, good internal quality, long tuber shape

Entry	Pedigree	2021 Scab Score*	Characteristics
Primabelle	HZPC	0.5	Average yield potential, lower specific gravity, good internal quality, lighter yellow flesh, inconsistent shape
Queen Anne (05-043-1)	99-002-14 x Gala	1.9	Oval to oblong shape, yellow flesh, yellow skin, shallow eyes, PVY resistance and resistance to Ro1 and Ro4 nematodes, attractive appearance, waxy skin, good internal quality
Soprano	Spunta x CMK1990- 002-002	1.6	Inconsistent type, pointed tubers, below average yield potential with smaller tubers, average specific gravity, common scab susceptibility
Tessa	Carmona x Diplomat	1.1	Buff skin, light yellow flesh, below average yield, above average specific gravity, good internal quality
Tokio	Norkia America	1.0	Flattened round tuber type, low yield, smalle tuber size profile, high specific gravity, moderate vascular discoloration, full season vine maturity
Tyson	HZPC	0.9	Above average yield, higher specific gravity slight vascular discoloration, light netted skin trace heat sprouts
Yukon Gold	Norgleam x W5279-4	0.7	Check variety, above average yield potentia severe hollow heart, pink blushing around eyes, blocky type, earlier vine maturity, lighter yellow flesh

Entry	Pedigree	2021 Scab Score*	Characteristics
AORTX09037-1W/Y	Fasan x Ivory Crisp	0.2	Average yield potential, higher specific gravity, earlier vine maturity, light netted skin deeper eyes, lighter yellow flesh
MSCC724-1Y	Yukon Gem x MSQ086-3	0.8	Below average yield, average specific gravity, moderate brown center, earlier vine maturity, smaller vine type
MSFF247-2Y	MSZ436-2SPL x C88	1.0	Lighter yellow flesh color, deeper eyes, below average yield, excellent internal quality, smaller vine type, earlier vine maturity
MSV093-1Y	McBride x MSP408- 14Y	0.7	High yield, high proportion A sized tubers, average specific gravity, mid-season vine maturity, recessed apical ends
MSX156-1Y	MSI005-20Y x Boulder	0.6	Very high yield, average specific gravity, full- season vine maturity, blocky larger tuber type, buff skin
MSX245-2Y	Manistee x McBride	0.3	Netted skin, deeper apical eyes, very high specific gravity, moderate internal brown spot, lighter yellow flesh color
ND1241-1Y	AND07358-1Y x Ivory Crisp	1.5	Below average yield, buff netted skin, very high specific gravity, good internal quality, larger vine type
W15240-2Y	NW64-6 x W9576- 11Y	0.9	Smaller tuber size profile, lower specific gravity, mid-season vine maturity, oval type, uniform appearance, smooth skin

Entry	Pedigree	2021 Scab Score*	Characteristics
W15248-16Y		0.0	Attractive appearance, below average yield higher specific gravity, potential common scab resistance, smooth waxy skin, good internal quality
W15248-17Y		0.5	Above average yield, lower specific gravity oval tubers, consistent shape and size, darker yellow flesh

* Scab rating based on 0-5 scale; 0 = most resistant and 5 = most susceptible. Common scab data provided by Potato Outreach Program. Line descriptions provided by potato breeding programs and updated by Potato Outreach Program following evaluations at trial locations throughout Michigan.

2021 Red Skin Variety Descriptions

Entry	Pedigree	2021 Scab Rating*	Characteristics
Canada Rose (CO00277-2R)	Colorado Rose x CO94065-2R	1.2	Excellent red skin color, variable tuber shape, above average yield, average specific gravity, moderate vascular discoloration, earlier vine maturity
Colorado Rose	NDTX9-1068-11R x DT6063-1R	1.1	High yield, average specific gravity, moderate vascular discoloration, moderate skinning, attractive skin color
Dark Red Norland	Redkote x ND626	0.5	Check variety, above average yield, larger vine type, earlier vine maturity, prominent eyes, less uniform type
Norland RP	Redkote x ND626	0.4	Moderate skinning, inconsistent tuber shape, moderate hollow heart, above average yield, lower specific gravity
Ricarda	M99-312 x E93/477	0.7	Marginal appearance, deeper eyes, above average yield and specific gravity, moderate vascular discoloration
Rosemara	Norika America	0.5	Heavy netted skin, less uniform type, moderate vascular discoloration and internal brown spot, full season vine maturity
CO14040-3R	CO99256-2R x CO05211-4R	0.8	Small tubers, inconsistent appearance, lower yield and smaller tuber size profile, above average specific gravity, smaller vine type, earlier vine maturity
CO14105-1R	CO07322-3R x CO05211-4R	0.2	Darker red skin, flattened oval type, below average yield and specific gravity, moderate vascular discoloration, moderate vine type

Entry	Pedigree	2021 Scab Rating*	Characteristics
CO15205-4R	ND4659-5R x NDC081655-1R	0.0	Uniform round type, lighter red skin, slight skinning, higher specific gravity, average yield potential, earlier vine maturity, slight vascular discoloration
CO15206-1R	ND8555-8R x CO05228-4R	0.0	Very low yield, smaller tuber size profile with mainly B sized tubers, average specific gravity, slight vascular discoloration, very early vine maturity
CO15211-5R	NDA050237B-1R x CO05228-4R	0.2	Below average yield and specific gravity, attractive skin color, sticky stolons, slight skinning, mid-season vine maturity
CO15219-3R	NDC081655-1R x CO05228-4R	0.3	Higher specific gravity, below average yield smaller tuber size profile, less uniform type, skinning, good internal quality
CO99076-6R	AC91848-1 x Rio Colorado	0.8	Above average yield and specific gravity, moderate vascular discoloration, round type moderate skinning
MSX324-2R	MSN105-1 x Colonial Purple	0.8	Growth crack in pickouts, lighter skin color, below average yield, higher proportion misshapen tubers
ND13292B-3R	ND081772B-3R x Dakota Jewel	0.0	Attractive skin color, below average yield an specific gravity, moderate vascular discoloration, high proportion A sized tubers
ND1394-5RY	ABD08168-3PEY x Dakota Jewel	1.5	Attractive appearance, lighter skin, light yellow flesh, high yield and specific gravity, good internal quality, common scab susceptibility

(2021 Red Skin Varieties Cont.)

Entry	Pedigree	2021 Scab Rating*	Characteristics
ND1466CB-1R	Dakota Ruby x ND050060CB-4R	0.0	Attractive red skin color, smaller uniform tuber type, below average yield, moderate hollow heart, smaller vine type and earlier vine maturity
NDA050237B-1R	ND028678-1RY x ND028770B-4R	0.6	Very high yield, uniform type, slight skinning, full season vine maturity, slight vascular discoloration, below average specific gravity
NDAF113484B-1	ND060570B-1R x ND8555-8R	0.5	Round tuber type, deeper eyes, very high yield, below average specific gravity, high proportion A sized tubers
RP2009-5R	Real Potatoes	1.0	Marginal appearance, lighter red skin, below average yield and specific gravity, smaller tuber size profile, light yellow flesh
W15268-89R		0.5	Smooth oval tubers, uniform type, average yield and specific gravity, excellent internal quality, earlier vine maturity

* Scab rating based on 0-5 scale; 0 = most resistant and 5 = most susceptible. Common scab data provided by Potato Outreach Program. Line descriptions provided by various potato breeding programs and updated by Potato Outreach Program following evaluations at various trial locations throughout Michigan.

2021 Round White Variety Descriptions

Entry	Pedigree	2021 Scab Rating*	Characteristics
Abbot (CMK1998-601-035)	Asterix x RH88-025- 050	0.8	Above average specific gravity, slight hollow heart, blocky type, less uniform tuber type, below average yield
Algonquin (NY141)	R6-5 x NY115	1.3	Above average yield and specific gravity, moderate brown center, common scab susceptible, larger vine type, blocky tuber type
Ashley	HZPC	0.8	Below average yield and specific gravity, moderate vascular discoloration, bright appearance with thin, waxy skin
Audrey (HZD 07-6093)	Virgo x Parella	0.6	Above average yield, blocky tubers with thin skin, slight vascular discoloration and brown center
Envol	F68123 x Simcoe	0.9	Average yield, above average specific gravity, good internal quality, heavy netted skin, deep eyes, earlier vine maturity
Reba (NY 87)	Monona x Allegany	0.4	Check variety, average yield potential and specific gravity, blocky oval type, recessed eyes, good internal quality
Superior	USDA96-56 x M59.44	0.1	Check variety, below average yield, above average specific gravity, larger vine type, deeper eyes, flattened oval tuber type
Volare	Parkland Seed Potatoes	1.0	Very high yield, attractive type, severe internal brown spot, moderate hollow heart and vascular discoloration, waxy skin, high proportion A sized tubers

(2021 Round White Varieties cont.)

Entry	Pedigree	2020 Scab Rating*	Characteristics
MSAA174-1	MSU161-1 x MSQ440-2	0.7	Below average yield and specific gravity, slight brown center, smaller vine type, mid- season vine maturity, flattened blocky tuber type
MSBB351-1	MSS483-1 x MSQ440-2	0.4	Low yield and specific gravity, slight hollow heart, inconsistent tuber type, pink blushing around eyes
MSBB375-1	MSW153-1 x MSN 105-1	0.5	Above average yield and specific gravity, slight vascular discoloration, buff netted skin, blocky oval tuber type
MSZ551-1	MSM182-1 x MSL268-D	1.5	Very high yield, above average specific gravity, moderate internal brown spot, vascular discoloration, and brown center, large blocky oval type, buff skin
NDAF102629C-4	ND7519-1 x ND7799C-1	0.4	Above average specific gravity, high proportion A sized tubers, good internal quality, larger vine type, deeper eyes
NYQ112-5		0.8	Above average yield, slight vascular discoloration, larger vine type, thin skin, moderate skinning
NYR203-1		0.4	Non uniform type, pointed tubers, very low specific gravity, moderate hollow heart, waxy skin, below average yield

* Scab rating based on 0-5 scale; 0 = most resistant and 5 = most susceptible. Common scab data provided by Potato Outreach Program. Line descriptions provided by various potato breeding programs and updated by Potato Outreach Program following evaluations at various trial locations throughout Michigan.

2021 Novelty Variety Descriptions

Entry	Pedigree	2021 Scab Rating*	Characteristics
Blackberry (MSV109-10PP)	COMN07- W112BGA x MSU200-5PP	0.5	Dark purple skin with chimeral white eyes, dark purple flesh, misshapen pickouts, good internal quality, smaller tuber size profile

* Scab rating based on 0-5 scale; 0 = most resistant and 5 = most susceptible. Common scab data provided by Potato Outreach Program. Line descriptions provided by potato breeding programs and updated by Potato Outreach Program following evaluations at trial locations throughout Michigan.

Table 9. 2021 Michigan Statewide Russet Potato Variety TrialsOverall Averages - Nine Locations

	CM	/T/A		PFR	CENT OF T	OTAL ¹			,	RAW TUBFI	R QUALITY ³	(%)				
LINE	US#1	TOTAL	US#1	Bs	As	ov	PO	SP GR ²	нн	VD	IBS	вс	COMMON SCAB RATING ⁴	VINE VIGOR⁵	VINE MATURITY ⁶	COMMENTS
AOR10063-2 ^m	527	671	79	10	79	0	11	1.078	0	50	10	0	1.0	4.5		flattened tubers, misshapen pickouts
AF6340-6 ^g	476	579	82	7	58	24	11	1.054	0	0	0	0	1.0	3.0	1.5	inconsistent skin, attractive type
akeview russet	455	524	86	7	68	18	7	1.077	0	1	10	0	0.9	3.1	3.4	larger size profile, flattened oblong type
408433-4sto ^{abcdfgjmn}	446	529	79	13	68	11	8	1.080	20	1	0	0	0.6	3.4	3.3	flat blocky oblong type, slight growth crack
AF6377-13 ^g	436	555	78	10	57	21	12	1.080	0	0	0	20	0.0	3.0	2.5	moderate skinning, dark russet skin
Silverton Russet ^{abcdfgjmn}	431	508	84	10	66	18	6	1.070	3	6	3	3	0.3	3.6	2.6	slight alligator hide, slight skinning
W13A11229-1RUS ^{abcdfgkjmn}	403	510	75	22	73	2	3	1.083	12	7	0	0	0.6	3.1	3.0	lighter russet skin, attractive type
Russet Norkotah ^{abcdfgjmn}	387	487	78	14	63	15	8	1.071	25	4	0	1	0.4	3.2	2.5	moderate skinning, misshapen pickouts
Reveille Russet ^{abcdfgjmn}	382	465	79	10	60	19	11	1.068	0	5	0	0	0.1	2.0	3.4	growth crack in pickouts, attractive skin
Vanguard ^{abcdfgjmn}	376	437	84	12	71	12	5	1.063	0	2	0	0	0.1	2.7	2.1	moderate alligator hide, attractive skin
AF5762-8 ^g	372	466	80	11	65	15	9	1.080	0	20	0	0	0.0	2.5	3.5	dark skin, attractive type, blocky shape
Tiger ^{abcdfgjm}	366	504	72	22	68	4	6	1.077	13	2	6	1	0.9	3.2	3.1	variable russet skin and tuber shape
A10071-1 ^{abcgm}	357	455	78	16	73	5	6	1.068	4	0	2	4	0.4	3.9	2.4	uniform type, darker russet skin, slight prominent eyes
AF6298-2 ^g	347	418	83	12	74	9	5	1.081	10	0	10	0	1.5	2.0	3.0	light to medium russet russet, non uniform type
CO10085-1Rus ^{abcdegj}	344	471	73	18	69	4	9	1.084	3	3	3	0	0.9	3.2	3.3	nice appearance, misshapen pickouts, prominent eyes
Goldrush ^{abdfjn}	337	422	75	16	63	12	9	1.071	7	0	0	0	0.0	3.1	2.4	heavy dark russet skin, misshapen pickouts
A09119-4LB ^{abfgm}	323	399	81	11	75	6	8	1.074	0	17	1	0	1.1	3.1	2.3	light russet skin, misshapen pickouts
Western Russet ^{bm}	317	411	77	16	76	1	7	1.074	0	2	0	0	0.5	3.9	2.5	deeper eyes, knobs and points in pickouts
A11737-1LB ^{bm}	316	410	77	17	75	2	6	1.074	0	0	0	0	1.0	3.5	1.0	medium russet skin, knobs and points in pickouts
Burbank SEL ^m	315	516	61	16	61	0	23	1.074	13	10	0	0	0.5	3.8	1.0	severe bottlenecks
Ranger Russet ^m	302	464	65	27	65	0	8	1.070	0	20	3	0	1.8	3.0		inconsistent shape, slight sticky stolons
A12114-7 ^{abcdegjmn}	278	371	69	24	66	3	7	1.000	1	20	0	0	0.4	3.3	2.3	smaller size profile, longer tubular type
406030-23 ^m	273	348	79	7	63	16	, 14	1.069	27	10	0	3	0.4	3.2	2.5	severe growth crack in pickouts, nice appearance
COTX08063-2RU ^{ilm}	267	363	73	21	71	2	6	1.080	0	4	1	0	1.0	3.2	1.5	Vanguard type, attractive skin
AC12080-4RU ^{gh}	249	322	78	20	74	4	2	1.065	0	5	0	0	1.0	3.0	2.3	moderate alligator hide, inconsistent type
AC12080-410 AF6296-3 ^g	249	431	56	16	52	4	28	1.005	0	0	10	0	2.0	3.0	3.0	light skin, misshapen tubers, points and knobs
AC12090-3RU ^{gh}	233	310	75	10	73	2	6	1.072	0	0	0	0	0.5	2.8	2.8	poor appearance, dark russet skin
AF5735-8 ^g	194	401	48	47	48	0	5	1.064	0	0	0	0	1.0	3.0	3.5	smaller long tubular type
CO12378-1RU ^{abh}	194	270	48 60	29	48 60	0	11	1.000	37	0	0	0	0.2	3.0	2.3	heavy russet skin, slight growth crack
Libero ^g	105	270	15	75	15	0	10	1.070	57	0	0	0	1.0	3.5	1.0	poor yield and emergence, very few potatoes
MEAN	342	449	73	19	65	8	9	1.007	6	6	2	1	0.7	3.2	2.5	poor yield and emergence, very lew polatoes
							5	1.070				-	⁴ COMMON S			
2021 RUSSET VARIETY TRIAL S ¹ 4-L Farms	AL SITES ¹ SIZE ² SPECIFIC GRAVITY Russets Data not replicated								ER QUALITY	-				<u>a</u> f surface or pitteo	lesions	
Elmaple Farms			Bs: < 4 oz			cpicated			HH: Hollov		10/		1.0: Presence			
Horkey Farms			As: 4 - 10							lar Discolora	tion				ers, though cover	rage is low
Jenkins Farms			AS: 4 - 10 OV: > 10 c							al Brown Sp			3.0: Pitted les			050 10 10 m
Kitchen Farms Mini Bulk Trial			PO: Picko						BC: Brown				4.0: Pitted les			
Kitchen Farms Strip Trial									_ 3. 5. 6 Wi							covered in pitted lesions
Lennard Ag. Co. Strip Trial			⁵ VINE VIG	OR RATIN	NG				⁶ VINE MAT	TURITY RATI	ING					
Lennard Ag. Co. NFPT Trial			Date: Vari						Date: Varia		<u> </u>					
Lennard Ag. Co. NFPT Add Ons	Trial		Rating 1-5						Rating 1-5							
Styma Potato Farms			1: Slow er						-	nes complet	ely dead)					
k										, ,						

1: Slow emergence 5: Early emergence (vigorous vine, some flowering)

^IWalther Farms NFPT Add Ons Trial ^mWalther Farms Norkotah Fertility Trial

ⁿVerbrigghe Farms

^kWalther Farms NFPT Trial

5: Late (vigorous vines, some flowering)

Table 10. 2021 Michigan Statewide Tablestock Potato Variety TrialsOverall Averages - Seven Locations

		cw	/T/A		PERC	ENT OF TO	OTAL ¹		_	RA	W TUBER	QUALITY ⁴ (%)	_			YELLOW	FLESH		RI	D SKIN		
	LINE	US#1	TOTAL	US#1	Bs	As	ov	РО	SP GR ²	нн	VD	IBS	BC	COMMON SCAB RATING ⁵	VINE VIGOR ⁷	VINE MATURITY ⁸	WAXINESS ⁷	FLESH COLOR ⁸	WAXINESS ⁷	SKIN COLOR ⁹	UNIFORM	TY ¹⁰ SILVER SCURF ¹¹	COMMENTS
	Columba ^{abcefj}	601	670	90	7	89	1	3	1.052	0	7	2	0	0.3	3.8	1.6	3.7	2.0					heat sprouts, uniform type, bright appearance
	MSX156-1Y ^{di}	539	562	96	0	86	11	3	1.067	5	0	0	0	0.6	3.5	3.8	2.4	2.7					blocky large type, buff skin
	Danina ^{cei}	504	610	83	13	83	0	4	1.071	3	6	0	0	1.0	3.3	2.9	3.3	3.5					moderate alligator hide, trace pointed tubers
	MSV093-1Y ^{abcdfgj}	481	523	92	6	90	2	2	1.069	0	0	0	0	0.7	3.6	3.2	2.2	2.3					medium netted skin, recessed apical ends
	Floridana ^{abcefi}	471	562	83	13	83	0	4	1.064	5	11	0	0	0.6	3.3	2.6	3.4	3.0					non uniform type, misshapen pickouts
	Goldfinger ^{acei}	470	630	75	19	75	0	6	1.053	0	1	5	3	0.8	3.4	3.2	3.8	2.9					smooth skin, trace heat sprouots
	Allora ^{abcefj}	458	545	84	11	83	1	5	1.068	5	7	0	3	0.9	3.3	2.3	2.7	2.3					pointed tubers, light skin netting
	Golden Globe ^{abcdfgj}	458	540	85	11	84	0	5	1.064	1	0	0	0	0.4	3.8	2.2	3.4	2.4					uniform type, light thin skin
	Nectar ^{abdfi}	453	580	78	20	78	0	2	1.075	24	17	28	0	1.0	3.2	3.8	3.1	2.5					pink blushing around eyes, light netted skin
	Christel ^{ei}	442	575	78	19	78	0	3	1.061	0	5	2	0	0.9	3.4	2.8	2.9	3.4					oblong type, trace growth crack
	Albertine ^{acei}	437	547	79	9	79	0	12	1.053	5	11	13	3	1.5	3.8	1.8	2.9	3.1					severe points and pear shapes in pickouts
	Prada ^{abcdfgi}	430	532	79	14	79	1	6	1.059	3	8	0	1	0.6	3.4	2.0	3.0	2.3					longer type, prominent eyes, marginal appearance
	Corinna ^{acei}	428	494	87	9	87	0	4	1.054	0	6	0	0	0.5	3.0	2.4	3.1	3.0					light netting, growth cracks
	W15248-17Y ^j	428	490	87	12	87	0	1	1.057	0	0	0	0	0.5	3.0	1.5	4.0	4.0					oval tubers, consistent size and shape
	Tyson ^{abcefi}	421	518	81	10	81	0	9	1.070	0	11	2	2	0.9	3.5	3.3	2.7	2.1					pointed tubers, light netted skin, trace heat sprouts
	MSX245-2Y ^{bcdi}	416	453	91	8	90	1	1	1.081	0	1	25	0	0.3	3.4	3.8	1.5	1.9					deeper apical eyes, netted skin
	Montana ^{acei}	415	559	73	25	73	0	2	1.058	0	0	0	3	0.8	3.2	3.1	3.6	4.2					oblong type, lenticel scarring, smooth skin
	Primabelle ^{abcefj}	404	565	70	24	70	0	6	1.052	0	7	3	0	0.5	3.3	1.3	3.4	2.3					trace heat sprouts, inconsistent shape
	Yukon Gold ^{abcefi}	403	466	87	4	86	1	9	1.079	53	1	0	2	0.7	3.1	2.0	2.8	2.2					blocky tubers, pink blushing around eyes
YELLOW SKIN	Constance ^{abcefj}	402	522	77	19	77	0	4	1.068	0	2	5	0	0.9	3.3	2.6	3.5	2.8					flattened type, nice smooth appearance
TYPE	Melody ^{abcdfgi}	396	490	80	13	80	1	6	1.066	13	4	20	0	0.5	3.0	3.3	3.0	2.6					netted skin, growth cracks in pickouts
	W15240-2Y ^{abcefj}	396	510	77	20	77	0	3	1.060	0	7	7	0	0.9	3.2	2.3	3.8	2.8					nice appearance, inconsistent tuber type
	Honey Ryder ^{acei}	392	515	75	17	75	0	8	1.056	0	0	3	0	0.6	3.3	3.8	3.6	3.0					heat sprouts, attractive appearance
	Queen Anne ^{abcefj}	381	563	64	34	64	0	2	1.058	0	3	0	0	0.8	2.7	2.4	4.0	3.6					oblong to long type, smooth skin
	Paroli ^{abcefgi}	379	495	77	8	76	1	15	1.058	0	2	0	0	0.5	4.1	2.1	3.3	3.2					growth cracks, light netted skin
	AORTX09037-1W/Y ⁱ	374	480	78	18	78	0	4	1.084	0	7	0	0	0.2	3.7	2.2	2.2	1.8					slight growth crack, light netted skin, deep eyes
	Cascada ^{acefi}	341	532	64	26	64	0	10	1.072	2	3	0	0	0.6	3.4	3.5	3.3	4.2					smaller tuber type, buff skin
	Tessa ^{bi}	319	381	84	14	84	0	2	1.074	2	2	0	0	1.1	2.9	2.3	2.1	1.9					uniform buff skin
	MSCC724-1Y ^{abcdj}	313	370	85	8	84	1	7	1.069	4	0	4	26	0.8	2.6	1.9	2.7	2.5					lenticel scarring, trace pointed tubers
	W15248-16Y ^j	311	359	87	13	87	0	0	1.083	0	0	0	0	0.0	2.5	3.0	4.0	2.5					nice appearance
	MSFF247-2Y ^j	309	380	81	17	81	0	2	1.070	0	0	0	0	1.0	2.5	2.0	3.5	1.5					deeper eyes
	Excellency ^{abf}	304	451	67	23	67	0	10	1.077	0	0	0	0	0.8	2.3	2.5	3.2	2.8					non uniform type, points in pickouts
	ND1241-1Y ^j	266	341	78	20	78	0	2	1.091	0	0	0	0	1.5	4.0	3.5	2.5	2.5					buff netted skin
	Soprano ^{abefi}	253	454	55	37	55	0	8	1.066	0	2	2	0	1.6	3.2	2.3	3.5	2.1					inconsistent type, trace pointed tubers
	Ballerina ^f	250	390	64	29	64	0	7	1.061	0	0	0	0	0.5	4.0	1.5	3.5	3.5					buff skin type, moderate silver scurf
	Mary Ann ^{ei}	200	367	55	40	55	0	5	1.073	0	2	0	0	1.4	2.1	3.8	3.9	4.0					bight skin, pointed tubers
	Gourmandine ^{abefi}	143	386	35	55	35	0	10	1.065	0	9	16	0	0.6	2.4	2.6	3.8	3.1					longer flattened type, points in pickouts
	Erika ^{abefi}	134	364	34	62	34	0	4	1.064	0	3	0	0	1.0	2.7	1.8	3.4	2.8					attractive appearance, smooth skin
	Tokio ^j	134	222	54 60	37	60	0	3	1.086	0	20	0	0	1.0	3.5	4.0	2.5	2.0					flat round to oval tuber type
	Celandine ⁱ	92	272	34	60	34	0	6	1.069	0	0	0	0	0.3	2.7	4.0	3.5	1.5					tubular flattened type, bright appearance
-	MEAN	369	482	75	20	74	1	5	1.067	3	4	3	1	0.8	3.2	2.6	3.2	2.7					casara nattened type, origin appearance

		cv	VT/A		PER	CENT OF T	DTAL			RA	W TUBER	QUALITY⁴	(%)	_			YELLOW	FLESH		RE	D SKIN		
	LINE	US#1	TOTAL	US#1	Bs	As	ov	PO	SP GR ²	нн	VD	IBS	BC	COMMON SCAB RATING ⁵	VINE VIGOR ⁷	VINE MATURITY ⁸	WAXINESS ⁷	FLESH COLOR ⁸	WAXINESS ⁷	SKIN COLOR ⁹	UNIFORMITY ¹⁰	SILVER SCURF ¹¹	COMMENTS
	NDA050237B-1R ^{abcefgi}	482	542	89	10	87	1	2	1.062	0	10	0	1	0.6	3.1	4.0			3.8	3.6	4.0	2.9	uniform type, nice skin, slight skinning
	NDAF113484B-1 ^{bcefi}	459	528	87	4	87	0	9	1.063	0	3	2	4	0.5	3.2	2.6			3.1	3.7	3.7	3.9	attractive skin color, round type, deeper eyes
	Colorado Rose ^{abcdfi}	438	533	82	13	82	0	5	1.071	2	20	2	2	1.1	3.0	2.6			3.4	3.6	3.3	3.5	moderate skinning, attractive skin color
	ND1394-5RY ⁱ	419	442	95	4	95	0	1	1.072	0	0	0	0	1.5	3.0	2.0		2.0	2.5	3.0	2.0	5.0	nice overall appearance, light colored skin
	CO99076-6R ^{abcdi}	411	467	88	8	88	0	4	1.070	0	12	0	0	0.8	3.0	2.6			3.5	3.9	3.8	3.6	round type, attractive skin, moderate skinning
	Norland RP ^{abcefgj}	405	476	84	13	82	1	4	1.060	10	7	1	0	0.4	3.4	1.8			3.0	2.9	2.6	3.3	moderate skinning, inconsistent shape
	Ricarda ^{acei}	401	503	80	9	80	0	11	1.069	0	23	0	3	0.7	3.8	2.5			3.2	2.1	3.0	2.8	poor appearance, deeper eyes
	Dark Red Norland ^{abcefgi}	386	454	85	8	85	0	7	1.061	4	4	0	0	0.5	3.8	1.5			3.4	2.9	2.9	3.6	prominent eyes, less uniform type
	86735.1 ^{ei}	377	488	77	14	77	Ō	9	1.072	0	19	17	0	0.3	2.6	3.9		2.0	2.3	2.5	4.2	3.7	poor appearance, medium netted skin
	Canada Rose (CO00277-2R) ^{ei}	371	438	85	12	85	Ō	3	1.068	0	14	Ö	0	1.2	2.8	1.8			3.4	3.6	3.8	4.4	excellent color, variable shape
RED SKIN	Rosemara ^{ei}	362	471	77	17	78	0	5	1.068	0	19	25	0	0.5	3.0	3.4		1.5	1.8	2.1	3.1	3.0	heavy netted skin, non uniform type
TYPE	W15268-89R ^j	303	398	76	22	76	0	2	1.071	0	0	0	0	0.5	3.5	1.5			3.5	3.0	3.5	3.0	smooth oval tubers, uniform type
	CO15205-4R ⁱ	299	336	89	11	89	0	0	1.076	0	10	0	0 0	0.0	3.8	2.0			3.8	3.7	3.3	4.3	uniform round type, lighter skin, slight skinning
	CO15211-5R ¹	239	288	83	15	83	0	2	1.062	0	10	0	0	0.2	2.7	2.2			3.3	3.8	3.5	3.5	nice color, sticky stolons, trace skinning
	ND13292B-3R ^j	235	259	91	7	91	0	2	1.062	0	20	0	0	0.0	2.5	2.0			2.5	4.0	3.0	4.0	nice skin color
	RP2009-5R ^{abefi}	230	391	59	31	59	0	10	1.052	0	1	2	2	1.0	3.1	2.0		1.9	3.5	1.9	2.8	3.5	
	ND1466CB-1R ⁱ	227	265			83		3			0	2		0.0				1.9	3.5	4.0	2.8 4.5	3.5	poor appearance, light skin
	ND1466CB-1R CO14105-1R ⁱ		265	83	14	83 81	0	3	1.074	27 0	13	0	0	0.0	1.8 2.3	1.8 3.2			3.3	4.0 4.5	4.5 3.7	3.7	nice color, smaller uniform type
		221		81	17				1.063	-													darker red skin, flattened oval type
	CO15219-3R'	212	312	68	31	68	0	1	1.076	0	0	0	0	0.3	2.7	2.8			3.5	3.8	3.5	3.2	small tuber type, not uniform, skinning
	CO14040-3R ⁱ	201	339	59	40	59	0	1	1.079	0	10	0	0	0.8	2.5	1.5			4.2	3.0	3.2	3.8	small tubers, poor appearance
	MSX324-2R ^{bei}	193	255	74	14	74	0	12	1.065	0	3	3	0	0.8	3.6	2.0			2.9	2.6	2.6	3.7	poor skin color, growth crack in pickouts
	CO15206-1R'	169	296	57	43	56	1	0	1.071	0	7	0	0	0.0	3.3	1.2			3.5	3.0	3.0	3.8	poor appearance, small non uniform tubers
	MEAN	320	398	79	16	79	0	4	1.068	2	9	2	1	0.5	3.0	2.3		2.0	3.2	3.2	3.3	3.6	
	Volare ^{ab}	679	741	92	5	91	1	3	1.055	10	15	35	5	1.0	3.3	2.3	3.3						attractive type and skin
	MSZ551-1 ^{bce}	568	623	91	5	88	3	4	1.074	3	7	10	7	1.5	2.5	3.5	1.7						large blocky oval tuber type
	NYQ112-5 ^{cef}	493	587	83	14	83	0	3	1.060	0	7	0	0	0.8	3.7	2.8	3.5						thin skin, moderate skinning
	Audrey ^{bcefj}	445	536	82	13	82	0	5	1.061	0	2	0	2	0.6	3.1	2.4	3.0						blocky tubers, thin skin, bright appearance
	MSBB375-1 ^{bc}	441	526	84	6	83	1	10	1.075	0	5	0	0	0.5	2.3	3.0	1.8						blocky oval type, inconsistent skin
	Algonquin ^{abcef}	438	508	86	5	86	0	9	1.074	0	0	2	20	1.3	3.8	2.5	2.3						non uniform type, blocky type
001010	Reba ^{abcefg}	416	445	94	4	88	6	2	1.068	3	0	0	5	0.4	3.3	2.9	2.7						blocky oval type, recessed eyes
ROUND WHITE TYPE	Envol ^{abcefg}	412	459	89	7	89	1	3	1.071	0	0	0	2	0.9	3.8	1.3	2.3						heavy netted skin, deep eyes
	Abbot ^{abcefg}	395	476	82	11	81	2	6	1.071	8	0	0	0	0.8	3.6	2.1	2.2						blocky type, less uniform, heavy skin
	NDAF102629C-4 ^{abcefg}	385	420	90	6	90	1	3	1.070	0	3	0	2	0.4	4.1	2.6	2.5						moderate deep apical eyes, round type
	Ashley ^{bcef}	380	468	79	18	80	0	2	1.062	0	15	0	3	0.8	3.0	2.6	3.4						bright appearance, thin skin
	NYR203-1 ^{abcefj}	369	444	83	12	83	0	5	1.056	17	10	7	3	0.4	3.0	2.7	3.2						non uniform type, pointed tubers
	Superior ^{bcef}	367	429	86	7	86	0	7	1.073	3	3	3	0	0.1	3.4	2.3	2.0						deep eyes, flattened oval type
	MSAA174-1 ^{bcd}	364	406	87	11	87	0	2	1.053	0	0	3	7	0.7	2.5	3.2	2.0						flattened blocky type
	MSBB351-1 ^{bcfg}	336	387	87	7	81	6	6	1 054	3	0	0	0	0.4	2.3	2.8	2.3						inconsistent type, pink blushing around eyes
	M3565511	433	497	86	9	85	1	5	1.065	3	4	4	4	0.7	3.2	2.6	2.5						inconsistent type, pink blasning around cycs
NOVELTY	Blackberry ^{bce}	481	617	75	22	75	0	3	1.063	0	0	0	0	0.5	3.0	3.7	0.0		3.0	5.0	5.0	3.7	chimeral white eyes, misshapen pickouts
	TRIAL MEAN	369	463	78	17	78	1	5	1.067	3	6	3	1	0.7	3.1	2.5	2.9	2.6	3.2	3.3	3.4	3.6	
		305		78	17	78	1	5	1.007	3	U	3	1	0.7	3.1	2.5	2.5	2.0	3.2	3.3	3.4	3.0	
21 TABLES	TOCK VARIETY TRIAL SITES		¹ SIZE Non-russet	tablectory		² SPECIFIC			³ RAW TUBE					DN SCAB RATIN		ar nitted locio			⁵ VINE VIGOR R. Date: Variable	ATING		⁶ VINE MATU Date: Variabl	
Iorkey Broth	ners		Bs: < 1 7/8"	LaviesLUCK		Data not r	epilated		(percent of HH: Hollow		0, 10)			ence of surface		or pitted lesions			Rating 1-5			Rating 1-5	
enkins Farm			As: 17/8" -	2 1 / 4"					VD: Vascula		tion					th covorago in la			-			-	s completely dead)
	is Nini Bulk Trial		AS: 1 //8" - OV: > 3 1/4'						IBS: Interna					d lesions on tu d lesions comn		gh coverage is lo			1: Slow emerge 5: Early emerge				s completely dead) rous vines, some flowering)
litchen Farm			PO: Pickout:						BC: Brown (51			d lesions comin					J. Larry enlerge			P. Fare (AIROL	ous vines, some nowening,
tyma Potato			FO: PICKOUT	5					BC: BLOWN (Lenter							in nitted locin-						
erbrigghe F													5.0. WO	c man 50/6 01 t		ce area covered	in pitteu iesions	2					
			7.444 2010	DATING		8	100		⁹ CKIN CC: C				10		01.00				¹¹ CUL/ED COURT				
	ns Early Generation Selection		WAXINESS			*FLESH CC	LOK		SKIN COLC					RMITY OF SKIN					¹¹ SILVER SCURF				
	ns Replicated Trial		1: Heavy ne 5: Waxy, sm			1: White			1: Light pinl	(• •	variable, non-u					0: No incidence				
Valther Farm	is surp Trial	IUOTN		5: Dark ye	IIUW		5: Dark red				5: Highly	uniform, color	unroughou	ıL		5: High incidence of silver scurf							

Table 11. 2021 Russet Potato Variety Trial Walther Farms NFPT and Added Lines

Planting: 4/22/21 Vine Kill: 8/18/21 Harvest: 9/16/21

GDD₄₀: 3210

	CW	T/A		PERC	ENT OF TO	OTAL ¹			F	AW TUBER	R QUALITY ³ ((%)			
LINE	US#1	TOTAL	US#1	Bs	As	ov	РО	SP GR ²	нн	VD	IBS	вс	COMMON SCAB RATING ⁴	VINE VIGOR⁵	COMMENTS
AF6384-2	680	718	95	3	46	49	2	1.072	10	0	0	0	1.5	3.5	light skin type, blocky, oblong
A15094-11	662	816	82	10	70	12	8	1.069	0	0	0	0	2.0	4.0	tubular appearance, done
A12327-5VR	632	690	92	3	47	45	5	1.073	10	10	10	0	0.5	4.0	nice blocky type but less uniform
A11887-5adg	606	696	87	9	68	19	4	1.081	0	40	0	0	1.5	4.0	lighter russet skin, pointed tubers
AF5707-1	603	726	83	11	78	5	6	1.083	10	0	0	0	2.0	3.5	nice shape and type but too much scab
A16117-4	599	692	87	5	58	29	8	1.088	10	0	0	0	1.5	4.0	darker russet skin, points
A15190-8CR	594	683	87	4	54	33	9	1.079	0	20	0	0	0.0	4.0	large tubers, points, prominent eyes
AOR10071-8	576	697	83	15	72	11	2	1.085	0	60	0	0	1.0		nice skin finish, blocky, sticky stolons, trace heat knobs
AOR15166-2	560	594	95	4	84	11	1	1.082	0	10	0	0	1.0		light russet skin, attractive shape and appearance
AF6338-6	554	663	84	8	76	8	8	1.081	20	20	10	0	0.5	3.5	lots of points and pears, medium russet skin
AOR10129-1	549	609	90	8	70	20	2	1.073	30	0	0	0	2.5		anthocyanins on skin, poor skin finish
A09136-9LB	547	630	87	8	63	24	5	1.082	50	0	0	0	2.5	5.0	non uniform type, misshapen pickouts
AOR10093-1	539	658	82	9	51	31	9	1.081	0	20	0	0	2.5		inconsistent shape, severe knobs in pickouts
A12305-2adg	534	677	79	3	26	53	18	1.073	10	0	0	0	2.0	3.5	poor appearance
AAF10596-1	529	642	82	8	61	21	10	1.091	20	20	0	0	2.5	4.0	deeper eyes, nice skin but poor appearance
A15094-13	524	645	81	9	69	12	10	1.069	30	10	0	0	0.5	3.0	light russet, misshapen tubers
A15041-13	521	570	92	2	33	59	6	1.074	30	0	0	0	0.0	3.0	large clunky oblong tubers, darker skin
AAF11345-1	503	543	92	7	68	24	1	1.084	0	40	10	0	1.5	1.5	blush appearance, heavy eyebrows, nice shape, nice skin
A13036-1	482	520	93	4	66	27	3	1.084	10	20	0	10	0.0	4.5	nice skin, lots of deep eyes
AF5736-16	474	535	88	9	77	11	3	1.086	0	0	0	0	0.0	3.5	nice type, flat oblong to long type
A12303-4sto	468	596	79	15	69	10	6	1.088	10	0	0	0	1.0	3.0	nice blocky type, some misshapen pickouts
A15008-2TE	451	542	83	13	76	7	4	1.071	20	30	20	10	0.0	4.0	nice skin, less uniform tubers
A15099-10PMTV	444	520	86	8	66	20	6	1.075	0	50	0	0	1.5	4.0	nice appearance but moderate scab
AOR12069-3	444	531	83	16	60	23	1	1.074	10	10	0	0	2.5		light skin, misshapen pickiouts, trace sticky stolons
AFA5661-8	441	460	95	5	66	29	0	1.075	0	20	0	0	1.0	2.5	sticky stolons, non uniform russetting, nice type, blocky, oblong
AF6086-7	440	522	84	11	68	16	5	1.081	0	30	0	0	2.0	3.0	decent appearance, heavy eyebrows
AF6377-12	424	450	94	4	55	39	2	1.071	40	0	0	0	0.0	3.0	dark russet skin, nice shape
W13A11229-1RUS	423	512	83	16	72	11	1	1.075	10	40	0	0	1.0	3.5	nice appearance, lighter russet skin
A14057-4adg	416	494	84	5	66	18	11	1.073	0	0	0	0	1.0	3.5	slight sticky stolons, points, variable russet skin
A13074-1TE	415	506	82	9	59	23	9	1.088	0	0	0	0	0.0	4.5	blocky oblong type
AF6075-8	414	620	67	4	52	15	29	1.066	10	0	0	0	0.5	3.5	lots of bottlenecks, long to tubular type
A15028-16	410	495	83	6	74	9	11	1.088	40	0	0	10	1.0	3.0	medium russet skin, deep eyes, less uniform tubers
A09086-1LB	391	542	72	24	70	2	4	1.077	0	0	0	0	2.5	4.5	lighter russet skin
COA15494-8	377	461	82	12	49	33	6	1.068	0	0	0	10	0.5	4.0	nice dark russet skin type, flat blocky oblong type
AF6110-3	365	432	85	6	50	35	9	1.075	20	10	0	10	1.5	3.0	non uniform type, points and knobs
COAF13066-1	358	481	74	10	68	6	16	1.083	10	20	0	0	0.5	2.5	poor shape, sticky stolons, knobs
AF5521-1	354	392	91	4	49	42	5	1.087	10	30	20	0	2.0	3.0	nice shape, inconsistent skin
A14026-16adg	346	590	59	22	55	4	19	1.086	0	0	50	0	1.0	3.0	lots of bottlenecks, points, poor shape, light skin
AF5750-16	329	531	62	26	60	2	12	1.073	0	0	0	0	2.0	3.0	tubular type, bottlenecking, points
WAF14006-6	327	430	75	6	28	47	19	1.067	20	20	20	10	0.0	3.5	severe alligator hide, big tubers with growth crack
A10020-3sto	323	417	77	16	77	0	7	1.073	0	0	0	0	0.0	2.0	prominent eyes, dark russet skin, flattened shape
AOR11027-4	309	377	82	14	72	10	4	1.074	0	0	0	0	1.5		lighter russet skin

	cw	/T/A		PERC	ENT OF T	OTAL ¹			F	AW TUBER	QUALITY ³ ((%)									
LINE	US#1 TOTAI		US#1	Bs	As	ov	PO	SP GR ²	нн	VD	IBS	вс	COMMON SCAB RATING ⁴	VINE VIGOR⁵	COMMENTS						
A13085-2	302	365	83	13	64	19	4	1.066	0	0	0	0	0.5	4.0	nice skin, fairly uniform, slightly flattened type						
COAF11018-10	265	325	82	15	70	12	3	1.069	0	0	0	0	0.5	2.0	longer uniform type, medium russet skin, nice appearance						
A15042-1	262	373	71	18	64	7	11	1.083	0	0	0	0	0.5	3.0	oblong type, poor skin finish						
A15258-1	244	321	76	17	59	17	7	1.062	0	0	0	0	0.5	3.5	longer type						
A07914-4CR	232	360	65	11	60	5	24	1.062	40	0	0	0	1.0	5.0	tubular non uniform type, inconsistent skin						
A12304-1sto	224	332	68	32	56	12	0	1.070	0	0	10	0	0.0	3.0	medium russet skin type, attractive						
A10635-2VR	72	345	21	64	21	0	15	1.075	0	30	10	0	1.0	4.0	small size profile, pointed tubers						
A12314-1sto	44	85	52	26	52	0	22	1.070	0	0	0	0	0.5	2.0	skin cracking, few tubers						
NDAF1415Y-2	575	612	94	4	45	49	2	1.073	20	0	0	0	2.0	3.0	oblong blocky type, slight alligator hide						
AF6441-3	536	600	89	7	59	30	4	1.089	10	0	0	0	2.0	4.0	moderate skinning, acceptable appearance						
AF6377-10	518	565	92	4	33	59	4	1.072	10	0	0	0	0.5	3.0	nice blocky type, good appearance, almost too big						
AAF15010-1	463	591	79	15	73	6	6	1.100	10	10	0	0	0.5	4.0	nice uniform appearance, medium to dark russet skin						
NDAF13242B-1	458	550	83	10	83	0	7	1.087	60	0	0	0	0.0	3.0	flat blocky tuber type						
NDTX14247CAB-1W	427	549	77	23	73	4	0	1.069	0	10	0	0	0.5	4.5	nice appearance						
NDAF13242B-3	406	499	82	16	75	7	2	1.091	0	0	0	0	1.0	3.0	attractive shape						
NDTX1482YB-1W	359	548	66	30	52	14	4	1.083	0	0	0	0	1.5	4.0	less uniform shape						
AF6370-1	268	379	71	21	60	11	8	1.067	0	0	0	0	0.0	2.0	flat blocky type, dark russet skin, nice appearance						
ATX13287-1Ru	268	307	87	10	65	22	3	1.089	0	30	0	0	0.5	3.0							
Russet Burbank	239	720	33	15	31	2	52	1.074	0	0	0	0	0.5	3.0							
COTX08063-2Ru	228	344	67	32	60	7	1	1.061	0	0	0	0	0.0	3.0	nice appearance and skin, smaller type						
COTX10080-2Ru	202	256	79	14	55	24	7	1.078	0	50	30	0	1.5	3.5	average appearance, moderate alligator hide						
AF6075-9	190	240	79	8	47	32	13	1.055	0	0	0	0	0.0	3.0	lots of pears and points, nice skin, poor shape						
ATTX10007-1Ru	145	199	73	27	70	3	0	1.071	0	0	0	0	1.5 2.0		not uniform						
AAF12147-6	139	273	51	42	46	5	7	1.080	0	0	0	0	0.0 3.5		lenticel scarring, less uniform, light russet skin						
MEAN	409	510	79	13	60	19	8	1.077	9	10	3	1	1.0	3.4							

1SIZE 2SP Russets Dat Bs: < 4 oz</td> As: 4 - 10 oz OV: > 10 oz PO: Pickouts

FIELD DATA

Planting Date Vine Kill Date Harvest Date Days (planting to vine kill) Days (planting to harvest) GDD₄₀ (MAWN Station GDD₄₀ (planting to vine kill) Seed Spacing

 ²SPECIFIC GRAVITY
 ³RAW TUBER QUALITY

 Data not replicated
 (percent of tubers out of 10)

 HH: Hollow Heart
 HH: Hollow Heart

4/22/21

8/18/21

9/16/21

118

147 Constantine

3210

10"

VD: Vascular Discoloration

IBS: Internal Brown Spot

BC: Brown Center

⁴COMMON SCAB RATING

0.0: Complete absence of surface or pitted lesions
1.0: Presence of surface lesions
2.0: Pitted lesions on tubers, though coverage is low
3.0: Pitted lesions common on tubers
4.0: Pitted lesions severe on tubers
5.0: More than 50% of tuber surface area covered in pitted lesions

Varieties below the dashed line are added lines

⁵VINE VIGOR RATING

Date: 6/9/21 Rating 1-5 1: Slow emergence 5: Early emergence (vigorous vine, some flowering)

Table 12. 2021 Tablestock Potato Variety Trial

Walther Farms Early Generation Selection Planting: 5/7/21 Vine Kill: 8/21/21 Harvest: 9/30/21

GDD₄₀: 3220

LINE	cw	/Т/А		PERC	CENT OF T	OTAL ¹				RAW TUBE	R QUALITY ³ (%)	_		YELLO	V FLESH		REC) SKIN		_	
	LINE	US#1	TOTAL	US#1	Bs	As	ov	РО	SP GR ²	нн	VD	IBS	вс	VINE VIGOR ⁴	VINE MATURITY ⁵	WAXINESS ⁶	FLESH COLOR ⁷	WAXINESS	⁵ SKIN COLOR ⁸	UNIFORMITY ⁹	SILVER SCURF ¹⁰	COMMENTS
	WAF13058-1	461	552	83	5	82	1	12	1.075	0	0	0	0	3.5	2.5	4.0	3.0					attractive skin, moderate growth crack
YELLOW	ND1487-1Y	307	457	67	32	67	0	1	1.069	0	0	0	0	3.5	2.0	2.0	4.0					oval type, slight greening
SKIN TYPE	NYT61-3	221	281	79	20	79	0	1	1.079	0	0	0	0	2.0	3.0	3.0	3.5					nice, bright skin, slight variable shape
5111111	NYT61-2	211	337	63	35	63	0	2	1.079	0	0	0	0	3.0	2.5	2.5	2.0					nice shape, slight pink pigmentation around eyes
	NYT61-4	88	353	25	75	25	0	0	1.084	0	0	0	0	3.5	3.0	3.0	3.0					smooth skin, longer type
	MEAN	257	396	63	33	63	0	3	1.077	0	0	0	0	3.1	2.6	2.9	3.1					
	CO15127-1R	128	216	59	34	59	0	7	1.082	0	0	0	0	2.0	1.0			4.0	4.0	4.0	3.0	good shape, round, small, good color
	TX17802-5R	140	280	50	44	50	0	6	1.069	0	0	0	0	3.0	3.0			3.5	3.5	4.0	1.0	
	ND14324B-7R	152	217	70	30	70	0	0	1.071	0	0	0	0	1.5	3.0			3.0	4.0	4.0	2.0	nice shape
RED SKIN	ND14325B-7R	181	285	63	36	63	0	1	1.061	0	0	0	0	2.0	2.5			4.0	4.0	4.0	3.0	small yield but nice red skin
TYPE	COTX15111-1R	193	230	84	12	84	0	4	1.075	0	0	0	0	2.5	2.0			3.5	4.0	4.0	2.0	nice color and skin, inconsistent shape
TIFE	ND14220B-9R	320	367	87	9	87	0	4	1.067	0	0	0	0	2.5	1.5			3.0	3.5	2.0	3.0	acceptable color
	CO15113-1R	342	401	85	14	85	0	1	1.084	0	0	0	0	3.0	2.5			2.5	3.0	4.0	2.0	nice shape, acceptable color
	COTX15083-1R	395	462	85	15	83	2	0	1.073	0	0	0	0	3.0	2.0			3.0	4.0	2.0	2.0	smooth skin, nice color
	NDAF12143-1	415	488	85	13	85	0	2	1.067	0	0	0	0	3.0	2.5			3.0	4.0	4.0	3.0	acceptable color, nice eye depth, smooth
	MEAN	252	327	74	23	74	0	3	1.072	0	0	0	0	2.5	2.2			3.3	3.8	3.6	2.3	
WHITE	AF5819-2	398	455	88	11	88	0	1	1.069	0	0	0	0	3.5	3.0	2.5						bright, slight deep eyes, round, blocky
	TRIAL MEAN	263	359	72	26	71	0	3	1.074	0	0	0	0	2.8	2.4	2.8	3.1	3.3	3.8	3.6	2.3	
¹ <u>SIZE</u> Non-russe Bs: < 1 7/8 As: 1 7/8" OV: > 3 1/4 PO: Pickou	- 3 1/4" 1" ts	² SPECIFIC O Data not re		(percent HH: Hollo VD: Vascu IBS: Inter BC: Brown	ular Discolo nal Brown	out of 10)		Date: 6/2 Rating 1- 1: Slow e	5 mergence mergence	L	Date: 8/24 Rating 1-5 1: Early (vir	CURITY RATIN /21 nes completel orous vines, s	y dead)	ing)	⁶ WAXINESS R/ 1: Heavy nettii 5: Waxy, smoo	ng, buff	7 <u>FLESH COLOR</u> 1: White 5: Dark yellow		FIELD DATA Planting Date Vine Kill Date Harvest Date Days (planting t GDD ₄₀ MAWN S GDD ₄₀ (planting	o vine kill) o harvest) Station	5/7/21 8/27/21 9/30/21 112 146 Fairgrove 3220	
1: Light pir 5: Dark rec	ik	0,	ariable, non- niform, colo	uniform r throughout	t			0: No inc	idence of silv icidence of si										Seed Spacing		10"	

Evaluating New Potato Varieties for Herbicide Sensitivity-2021 MPIC Research Report

Erin Burns, Assistant Professor-Weed Science Department of Plant, Soil, and Microbial Sciences, Michigan State University

The potato research team at MSU is continually striving to introduce new potato varieties that have improved agronomic, storability, and processing qualities compared to standard commercial varieties. In recent years, varieties like Silverton Russet have been introduced to the US commercial potato industry with susceptibility to commonly used broadleaf herbicides. In the commercialization process, many growers have experienced yield losses, and therefore significant economic loss, which results in slow variety adoption or even rejection. Many times the developer of new varieties is not aware of all potential weaknesses of a variety and is unable to warn growers of potential management concerns like herbicide sensitivities. To protect the commercial potato industry in Michigan from these unforeseen impacts, the Michigan State University Weed Science and Potato Outreach Programs propose that all potato varieties nearing commercialization be screened for sensitivity to commonly used herbicide treatments. Therefore, objective one of this research was to identify varietal sensitivity to commercialization in Michigan: Lady Liberty, Mackinaw, Petoskey, Reveille, and Vanguard. These varieties were compared to the check varieties Atlantic, Lamoka, Snowden, Russet Norkotah, and Russet Silverton.

This study was conducted at the Montcalm Research Center. Four replicate blocks were included in the study consisting of the following advanced chip and russet varieties that are nearing commercialization in Michigan: Lady Liberty, Mackinaw, Petoskey, Reveille, and Vanguard. These varieties will be compared to the check varieties Atlantic, Lamoka, Snowden, Russet Norkotah, and Russet Silverton. The study was planted on 5/28/21. To isolate the impact of herbicide injury on yield and keep a weed free environment a blanket preemergence herbicide application of s-metolachlor plus linuron (trade names Dual/Brawl and Lorox/Linex) was made to control grass and broadleaf weeds. To evaluate injury resulting from postemergence herbicide application rimsulfuron (1 oz/A, trade name Matrix) with and without metribuzin (0.25 lb/A) were applied on 7/12/21.

Plot design followed that utilized in the Potato Outreach Program's on-farm variety trials (Figure 1). Herbicide treatments were applied using a CO_2 pressurized backpack sprayer calibrated to deliver 187 L ha⁻¹ at a pressure of 207 kPa through 11003 AIXR flat-fan nozzles. Percent weed control (0% = no control, 100% = complete control) and potato injury (0% no

injury, 100% = complete injury) were evaluated 7, 14, and 21 days after herbicide application and at harvest. The study was harvested 9/8/21. Yield data a presented in Figures 2-4.

Overall, potato varieties varied in their sensitivity to postemergence herbicides. To confirm results from year 1 of this study the study will be repeated again in 2022. The Michigan Potato Industry Commission supported this research.

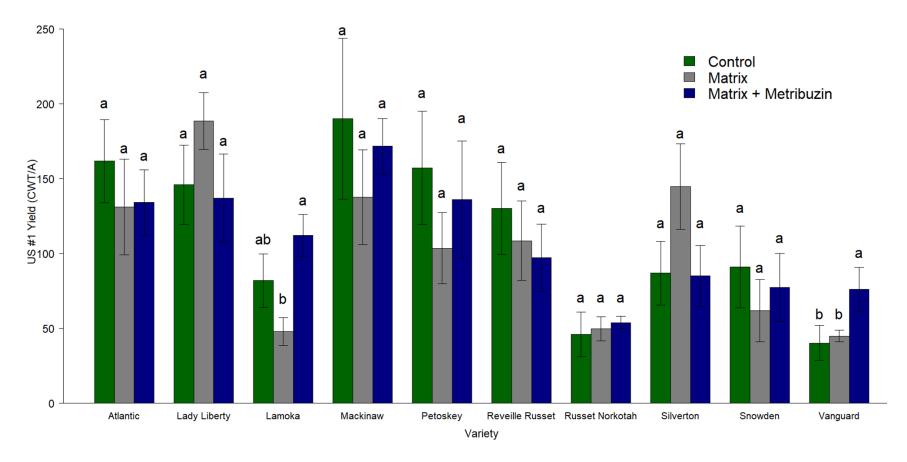


Figure 2. US #1 Yield (CWT/A) for variety sensitivity 2021 trial at the Montcalm Research Center.

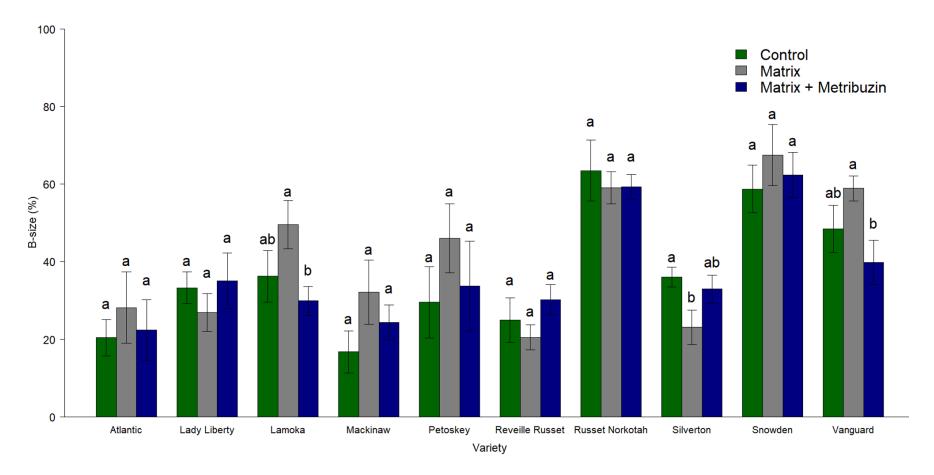


Figure 3. Potato B-size yield (%) for variety sensitivity 2021 trial at the Montcalm Research Center.

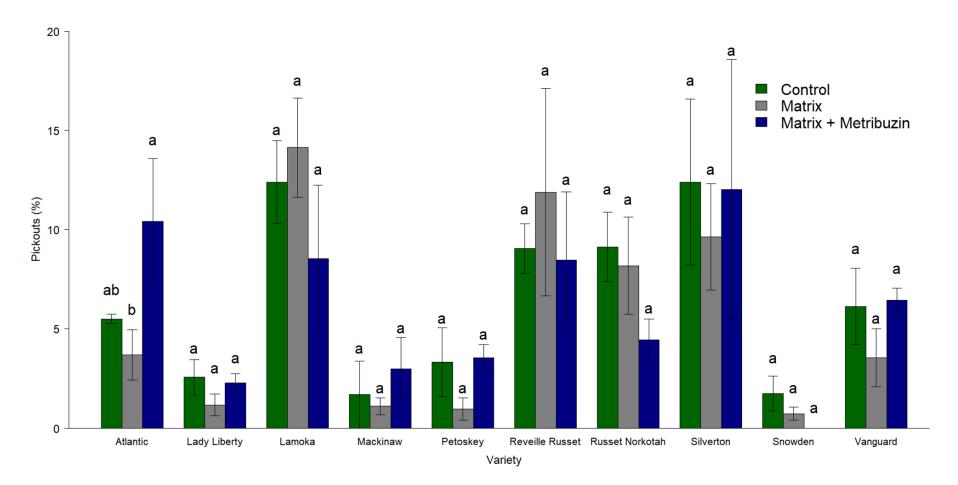
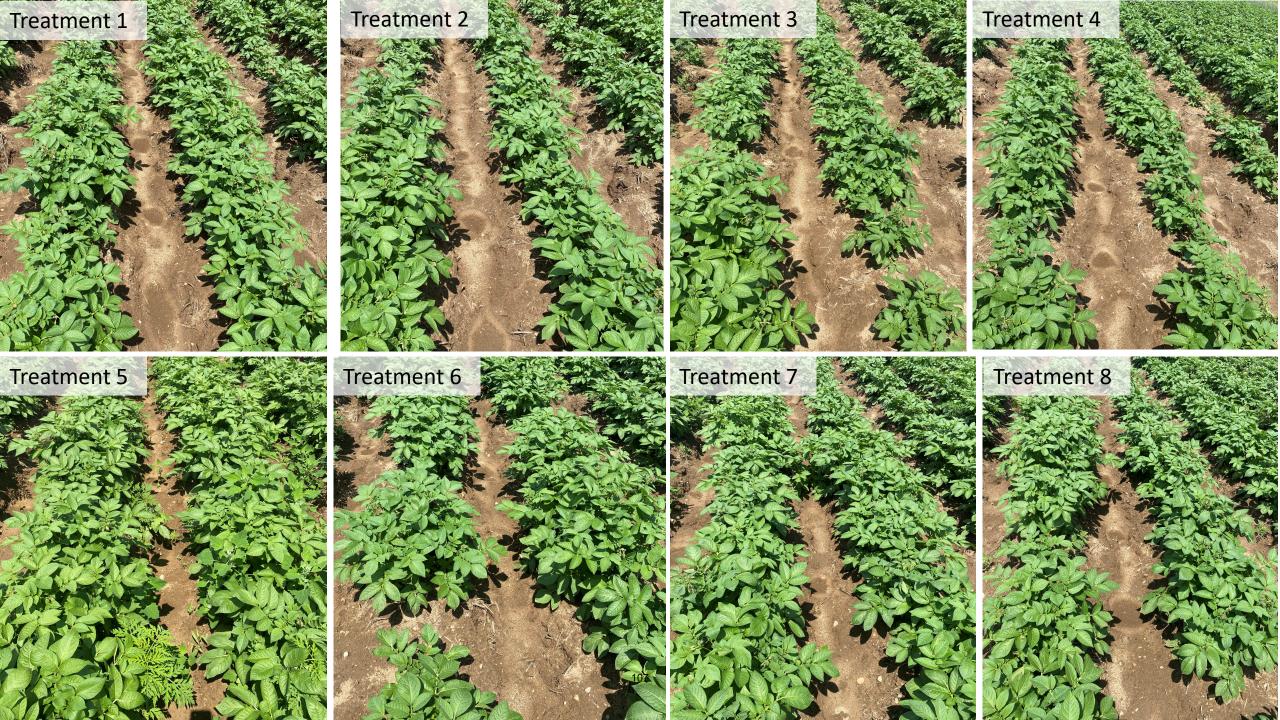


Figure 4. Potato pickouts (%) for variety sensitivity 2021 trial at the Montcalm Research Center.

Layering soil residual herbicides for troublesome weed control in potatoes-2021 MPIC Research Report


Erin Burns, Assistant Professor-Weed Science Department of Plant, Soil, and Microbial Sciences, Michigan State University

Many troublesome weeds (horseweed/marestail, waterhemp, palmer amaranth, common lambsquarters, and foxtails) in MI are shifting emergence patterns from a single early flush in the spring to extended emergence throughout the summer, therefore outlasting preemergence residual herbicide activity. Later emerging weeds can not only have yield impacts, but also be a harvest nuisance. Layering a residual soil-applied herbicide along with the postemergence herbicide pass is one way to maintain a barrier to weeds emerging later in the growing season. Therefore, objective two was to evaluate layering different group 14 (examples Reflex), 15 (examples Outlook/Dual), and 3 (examples Prowl) herbicides at two timings for season long weed control. All treatments except the control provided greater than 90% weed control throughout the duration of this study. Overall, results suggest both group 14, 15, and 3 herbicides provide residual control and layering dual postemergence will improve season long weed control. Treatment rates and plot photos (37 days after application) are presented in the table below. The Michigan Potato Industry Commission supported this research.

Michigan State University Layering residuals for palmer amaranth control

Trial ID: P01-21 Location: SJ 298 Trial Year: 2021 Protocol ID: P01-21 Investigator (Creator): Erin Burns Project ID: Study Director: Sponsor Contact: Appl Appl Rep Timing Code 1 Trt Treatment Form Form Rate Appl 2 3 4 Notes No. Name Conc Type Rate Unit 1 Dual II Magnum 7.64 L 1.33 pt/a CRACK A 101 208 305 408 50 DF CRACK A Lorox DF 2 İb/a Dual II Magnum 7.64 L 1.33 pt/a POST B CRACK A 2 Dual II Magnum 7.64 L 1.33 pt/a 102 207 308 405 50 DF 2 İb/a Lorox DF CRACK A Prowl H2O 3.8 L POST B 1.6 pt/a 3 Reflex 1 pt/a CRACK A 103 209 301 404 2 L Lorox DF 50 DF 2 İb/a CRACK A 25 DF CRACK A Matrix 1.5 oz/a 1.33 pt/a Dual II Magnum 7.64 L POST B 4 Reflex 2 L 1 pt/a CRACK A 104 206 303 402 Lorox DF 50 DF 2 İb/a CRACK A Matrix 25 DF 1.5 oz/a CRACK A Prowl H2O 3.8 L 1.6 pt/a POST B 5 Untreated 105 202 304 409 6 Valor SX 51 WG 1.5 oz/a CRACK A 106 204 309 401 Matrix 25 DF 1.5 oz/a CRACK A 1.33 pt/a POST B Dual II Magnum 7.64 L 7 Valor SX 51 WG 1.5 oz/a CRACK A 107 205 302 403 Matrix 25 DF 1.5 oz/a CRACK A Prowl H2O 1.6 pt/a POST B 3.8 L 4.17 L 8 Zidua SC 2.5 fl oz/a CRACK A 108 203 307 406 50 DF Lorox DF 2 lb/a CRACK A Dual II Magnum 7.64 L 1.33 pt/a POST B 9 Zidua SC Lorox DF 4.17 L 2.5 fl oz/a CRACK A 109 201 306 407 50 DF 2 lb/a CRACK A Prowl H2O 3.8 L 1.6 pt/a POST B

Sort Order: Replicate 1

Pictures taken 37 days after application

Evaluation of foliar fungicide timing to manage white mold of potato in Michigan, 2020 and 2021.

Chris Bloomingdale¹, Jaime Willbur¹, and James DeDecker²; ¹Potato and Sugar Beet Pathology Program Dept. Plant, Soil and Microbial Science Michigan State University East Lansing, MI 48824; ²Upper Peninsula Research & Extension Center Michigan State University Chatham, MI 49816

Montcalm Research Center (MRC): In 2021, a foliar fungicide timing trial was established at MRC in Lakeview, MI and managed by the Potato and Sugar Beet Pathology program (Bloomingdale and Willbur). The trial objective was to determine the most effective timing of fungicide applications for managing white mold in potato. A randomized complete block design, with four replicates, was used. Potato seed were cut from US#1 'Lamoka' tubers and allowed to suberize before planting. The trial was hand-planted 21 May. Plots were two rows wide (34-in. row spacing) by 20 ft long and a 10-in seed spacing was used. Standard grower practices were followed to manage non-target pests. Fluazinam applications (8 fl oz/A) were made 14 Jul (full bloom) and 28 Jul (14-d post-bloom); treatments of full bloom, post-bloom, and full followed by post-bloom applications were compared to a grower standard control. A CO₂ powered backpack sprayer, equipped with two TJ 8004XR flat fan nozzles and operating at a boom pressure of 38 psi, was used to apply fungicides at 20 gal/A. To control for late blight, weekly chlorothalonil or mancozeb applications were initiated 1 Jul and applied until vine kill. Apothecia data were collected weekly between 15 Jul and 23 Aug. Disease data were collected 18 Aug and 3 Sep. Twenty stems were arbitrarily rated from both rows and assigned a disease severity (0-3). The severity ratings were: 0 = no disease to 3 = infection girdling mainstem, resulting in wilting and/or death. The ratings were used to calculate a percent disease incidence (DI) and average disease severity of symptomatic plants (DS; 0-3). Disease index (DX) was calculated from the following equation: $DX = DI \times DS/3$. The plots were harvested 22 Sep. On 28 Sep, potatoes were washed then graded for size, weight, specific gravity, and internal defects. A generalized linear mixed model procedure was used to conduct the ANOVA and mean separations at α =0.05.

Mean DX values ranged between 81 and 90% at the final rating. All treatments resulted in significantly lower DX values at 18 Aug (P < 0.01) but not at Sep 3 (P > 0.05) when compared to the grower standard control (Table 1). No significant differences in total or marketable yield were observed (P > 0.05). The trial experienced high-water levels because of frequent rain and poor drainage, thus resulting in poor yields. Apothecial observations also indicated that inoculum pressure remained high from full bloom to 28-d post-bloom, supporting the severe disease pressure observed in the trial. However, only the full bloom application appeared to numerically influence disease and yield. To validate these findings, additional timings and combinations may be investigated in the future to identify key growth stages for effective and economical management.

No.	Treatment, Rate ^z , and Timing ^y	DX (%) ^x Aug 18	DX (%) Sep 3	Total Yield (CWT/A)	Marketable Yield (CWT/A)
1 ^w	Grower standard treated control	66.7 a	90.0	190.6	119.6
2	Omega 500F (8 fl oz) full bloom	40.9 b	81.0	208.6	145.7
3	Omega 500F (8 fl oz) 14-d post-bloom	52.5 b	87.1	156.9	106.0
4	Omega 500F (8 fl oz) full bloom + 14-d post-bloom	48.4 b	85.4	184.6	118.1

Table 1. White mold, yield, and marketable yield observations in treatments tested in small-plot research at the Montcalm Research Center in Lakeview, MI in 2021.

^z All rates, unless otherwise specified, are listed as a measure of product per acre, and all tank mixes contained MasterLock at a rate of 0.25 % v/v.

^y Applications were made on the following dates: full bloom = 14 Jul and 14-d post-bloom = 28 Jul.

^x Column values followed by the same letter were not significantly different based on Fisher's Protected LSD (α =0.05); if no letter, then the effect was not significant.

^w Treated control.

Dale Johnson Farm, Sagola, MI: In 2020 and 2021, a foliar fungicide timing trial was conducted on the Dale Johnson Potato Farm in Sagola, MI, managed by the grower with guidance from MSU Extension (DeDecker). The trial objective was to determine the most effective timing of fungicide applications for managing white mold in potato. A completely randomized design with three replicates was used. A commercial potato field with a history of white mold was selected for the trial and planted to the variety Silverton using standard grower practices. Plots were thirty-six rows wide (34-in. row spacing), running the length of the field, to accommodate the grower's self-propelled sprayer. Standard grower practices were followed to manage non-target pests. A John Deere R4038 sprayer, equipped with air-induction flat fan nozzles, was used to apply fungicides at 40 gal/A. To control for late blight, weekly chlorothalonil applications (Bravo Ultrex at 1.25 lbs/A) were made until vine kill. Treatments of full bloom, 14-d post-bloom (2020), and full bloom + 14-d post-bloom (2021) were compared to the grower's standard treated control (chlorothalonil only). In 2020, fluazinam applications (8 fl oz/A) were made 20 Jul (full bloom) and 3 Aug (14-d post-bloom) as a tank mix with chlorothalonil. In 2021, fluazinam applications (8 fl oz/A) were made 28 Jul (full bloom) and 11 Aug (14-d post-bloom) as a tank mix with chlorothalonil. Disease data were collected 27 Aug, 2020 and 31 Aug, 2021. Fifty stems were rated (5 subsamples of 10 stems each) from the center twelve rows of each plot and assigned a disease severity rating (0-3). The severity ratings were: 0 = no disease to 3 = infection girdling main stem, resulting in wilting and/or death. The ratings were used to calculate a percent disease incidence (DI) and average disease severity of symptomatic plants (DS; 0-3). Disease index (DX) was calculated from the following equation: $DX = DI \times DS/3$. A generalized linear mixed model procedure was used to conduct the ANOVA and mean separations at α =0.05.

In 2020, DI values ranged between 30.0 and 72.0% and DX values ranged between 12.7 and 38.7%. There were significant differences among mean DI (P = 0.0006) and mean DX (P = 0.01) values of the treatments (Table 1). The best performing single-pass treatment at 14 days post bloom led to a 67% reduction in average disease index over the control. In 2021, DI values ranged between 1.3% and 35.3% and DX values ranged between 0.44% and 16.7%. There were significant differences among mean DI (P = 0.016) and mean DX (P = 0.027) values of the treatments (Table 2). The two-pass treatment at full bloom + 14 days post bloom led to a 97% reduction in average disease index over the control. These results suggest that later fluazinam applications and/or multiple fluazinam applications may be helpful in managing potato white mold, particularly in longer flowering varieties. Possible confounding factors in this study included a) that our full bloom applications were slightly early in 2020 and late in 2021 (1-2 days), and b) wind events that removed many blossoms between the full bloom and post bloom applications. Additional research is needed to confirm our results, and to demonstrate the relationship between white mold control and potato yield and/or quality. The authors thank Dale Johnson for his collaboration on these two years of on-farm research and MPIC for their financial support.

No.	Treatment, Rate ^z , and Timing ^y	DI (%) ^x	DX (%)
1 ^w	Grower standard treated control	72.0 a	38.7 a
2	Omega 500F (8 fl oz) full bloom	50.0 b	25.1 b
3	Omega 500F (8 fl oz) 14-d post-bloom	30.0 c	12.7 c

Table 1. White mold observations in treatments tested on-farm in Sagola, MI in 2020.

^z All rates, unless otherwise specified, are listed as a measure of product per acre.

^y Applications were made on the following dates: full bloom = 20 Jul and 14-d post-bloom = 3 Aug.

^x Column values followed by the same letter were not significantly different based on Student–Newman–Keuls multiple comparisons test (α =0.05); if no letter, then the effect was not significant.

^w Treated control.

Table 2. White mold observations in treatments tested on-farm in Sagola, MI in 2021.

No.	Treatment, Rate ^z , and Timing ^y	DI (%) ^x	DX (%)
1 ^w	Grower standard treated control	35.3 a	16.7 a
2	Omega 500F (8 fl oz) full bloom + 14-d post-bloom	1.3 b	0.4 b

^z All rates, unless otherwise specified, are listed as a measure of product per acre.

^y Applications were made on the following dates: full bloom = 28 Jul and 14-d post-bloom = 11 Aug.

^x Column values followed by the same letter were not significantly different based on Student–Newman–Keuls multiple comparisons test (α =0.05); if no letter, then the effect was not significant.

^w Treated control.

Utilizing Envita Microbial Inoculant to Fix Nitrogen and Reduce Fertilizer Application

Kurt Steinke and Andrew Chomas, Michigan State University See <u>soil.msu.edu</u> for more information

Location: Montcalm Research Farm	Tillage: Conv., 34-in. row
Planting Date: May 12, 2021	Trt's: See below
Soil Type : Loamy sand; 1.2 OM; 6.9 pH; 266 ppm P; 132 ppm K;	Emerge: June 7 Hill: June 16
CEC: 4.7	_
Variety: Lamoka	Replicated: 4 replications

	Plant Height (cm)	Petiole %N 30	Petiole %P 30	Petiole %K	Petiole Mn ppm
Treatment	7/6/2021	DAE	DAE	30 DAE	30 DAE
Standard NPK Program	66 a	4.4 a	0.33 a	9.9 a	238 ab
Standard NPK Program	66 a	4.4 a	0.34 a	9.9 a	248 a
with Envita Application					
Standard NPK Program	66 a	3.6 b	0.35 a	10.6 a	220 bc
with 50% recommended N					
Standard NPK Program	65 a	3.6 b	0.31 a	10.2 a	193 c
with 50% recommended N					
and Envita Application					
LSD(0.10) ^a	NS	0.29	NS	NS	27.5

^a LSD, least significant difference between means within a column at ($\alpha = 0.10$).

	Tuber Count A's	Yield A's	Total Yield	Sp.
Treatment	(count/plot)	(cwt/A)	(cwt/A)	Gravity
Standard NPK Program	94 a	236 a	237 a	1.08 a
Standard NPK Program	94 a	244 a	244 a	1.08 a
with Envita Application				
Standard NPK Program	83 a	197 b	197 b	1.08 a
with 50% recommended N				
Standard NPK Program	93 a	207 b	207 b	1.08 a
with 50% recommended N				
and Envita Application				
$LSD_{(0.10)}^{a}$	NS	18.9	19.0	NS

^a LSD, least significant difference between means within a column at ($\alpha = 0.10$).

Summary: Trial quality was average. All treatments received 20 gpa 10-34-0 banded 2x2 at planting (80 lbs P_2O_5/A). Standard NPK program consisted of N applications split into 3 application timings including emergence, hilling, and post-hilling (221 N). Potassium consisted of 200 lb. K₂O/A as KCl applied PPI. All treatments received 0.5 T/A gypsum. Treatments receiving 50% total N rate consisted of N applications split into 3 application timings including emergence, hilling, and post-hilling (110 N). Envita-treated plots consisted of 3.2 fl oz/A applied with 5 gpa water in-furrow on the seed. Calcium and magnesium soil test concentrations were not limiting in the current study.

Envita is a naturally occurring bacteria that may establish itself within a plant to fix nitrogen potentially reducing inorganic N application requirements. In the current environment tested, Envita did not appear to influence plant height or petiole N, P, K, and Mn concentrations. The 50% N rate simply reduced petiole N and Mn concentrations with no differences between Envita-treated and untreated at the lower N rate. No differences were observed across treatments regarding tuber counts (A's). Total yield and "A" tuber yield were not significantly affected with Envita application. Again, the 50% N rate simply reduced overall potato yields with no differences between Envita-treated and untreated. Specific gravity was unaffected across treatments in the current study. Further research on microbial inoculants may be warranted but soil physical and chemical properties may also influence the likelihood of observing a crop response. Please visit soil.msu.edu for further details and other field crop research results.

Polyhalite as a Source of Polysulfate Fertilizer in Potato Production

Kurt Steinke and Andrew Chomas, Michigan State University See <u>soil.msu.edu</u> for more information

Location: Montcalm Research Farm	Tillage: Conv., 34-in. row
Planting Date: May 12, 2021	Trt's: See below
Soil Type : Loamy sand; 1.2 OM; 6.9 pH; 266 ppm P; 132 ppm K;	Emerge: June 7 Hill: June 16
CEC: 4.7	
Variety: Lamoka	Replicated: 4 replications

	Tuber Count A's	Yield B's	Yield A's	Total Yield	Sp.
Treatment	(count/plot)	(cwt/A)	(cwt/A)	(cwt/A)	Gravity
Standard-GSP	81 ab	42.6 a	188 a	231 bc	1.08 b
$200 \text{ lb } \text{K}_2\text{O/A} \text{ as MOP}$					
0.5 T/A Gypsum					
Polyhalite w/ MOP	91 a	51.9 a	209 a	261 ab	1.08 b
$100 \text{ lb } \text{K}_2\text{O/A} \text{ as Poly}$					
100 lb K ₂ O/A as MOP					
Polyhalite w/ MOP	90 a	50.9 a	169 a	271 a	1.08 b
50 lb K ₂ O/A as Poly					
$150 \text{ lb } \text{K}_2\text{O/A} \text{ as MOP}$					
No K ₂ O – Control	69 b	42.7 a	175 a	218 c	1.09 a
0.5 T/A Gypsum					
LSD(0.10) ^a	14	NS	NS	37.7	0.003

^a LSD, least significant difference between means within a column at ($\alpha = 0.10$).

Summary: Trial quality was average. All treatments received 20 gpa 10-34-0 banded 2x2 at planting. Nitrogen applications were split into 3 application timings including emergence, hilling, and post-hilling (221 N). Potassium consisted of 200 lb. K_2O/A applied PPI; treatments not receiving polysulfate received 0.5 T/A gypsum; total application rates were 245 N, 80 P2O5, and 200 K₂O (lbs/A). Polysulfate is a mined mineral fertilizer source containing 19% S, 14% K₂O, 12% Ca, and 4% Mg. Unlike potash (KCl), polysulfate does not contain chloride and the sulfur releases in accordance with mineralization rates of the mineral. In the current study, all treatments receiving K₂O displayed a greater tuber counts (A's) as compared to treatments without K₂O. No significant differences across treatments were observed in A or B tuber yields. Total tuber yields with polysulfate were significantly greater than where K₂O was not applied whereas total tuber yields with a standard KCl application were similar to the untreated K₂O

treatment. Utilizing polysulfate as 25% of total K₂O application significantly increased yield compared to standard complete KCl application while increasing polysulfate to 50% of total K₂O applied did not improve total yield. Specific gravity was mostly unaffected by K₂O application other than where K₂O was not applied. Calcium and magnesium soil test concentrations were not limiting in the current study. Further research on utilizing polysulfate as a K source in potato will continue with additional work on storage and fry color proposed. Please visit <u>soil.msu.edu</u> for further details and other field crop research results.

Management of Verticillium dahliae using bio-fungicides

Marisol Quintanilla * Applied Nematologist * Dept. of Entomology, Michigan State University 288 Farm Lane, Rm 51, East Lansing, MI 48824 marisol@msu.edu; 517-881-3740 Henry Chung Dept. of Entomology. Michigan State University 293 Farm Lane, Rm 303, East Lansing, MI 48824 hwchung@msu.edu

Introduction:

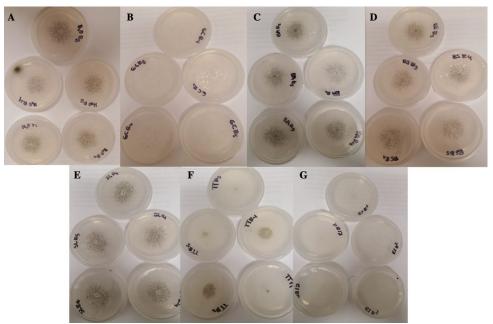
Potato Early Die is caused by an interaction between the root-lesion nematode, *Pratylenchus penetrans*, and the soil-borne fungus *Verticillium dahliae*. In our previous work, we have been successful in evaluating effective management strategies for *P. penetrans*. Work in our lab completed by Cole et al. (2020) determined that incorporating poultry manure or a compost blend (poultry and dairy compost with wood ash) significantly reduced nematodes in both field and lab conditions. However, we did not observe a significant reduction of *V. dahliae* incidence. Therefore, with the funds available through the MPIC grant, we evaluated the effects of different bio-fungicides and synthetic fungicides alone and in combination with composts and manures to manage *V. dahliae*.

Materials and Methods:

Potato stems collected from a potato field located in Three Rivers, MI in July of 2020. Stem pieces were plated in Verticillium media and incubated for 15 days under darkness. One microsclerotia of *Verticillium dahliae*-like colonies was plated in verticillium media and incubated under the same conditions. After 15 days, DNA was extracted using the DNeasy Plant Pro Kit and it was confirmed that only one of the isolates was *Verticillium dahliae* Kleb. Thus, this isolate was further cultured and used for laboratory and greenhouse experiments.

Sensibility of *V. dahliae* to *Bacillus amyloliquefaciens* str. D747, *Bacillus subtilis*, *Streptomyces lydicus*, *Trichoderma asperellum* + *Trichoderma gamsii*, *Gliocladium catenulatum* Str. J1446, Azoxystrobin and Benzovindiflupyr, was tested under lab conditions. Briefly, 5 micosclerotia of *V. dahliae* was treated with each product. After 72 hours of exposure, microsclerotia was grabbed and plated in Verticillium media. Growth and production of microsclerotia was recorded after 15 days of incubation

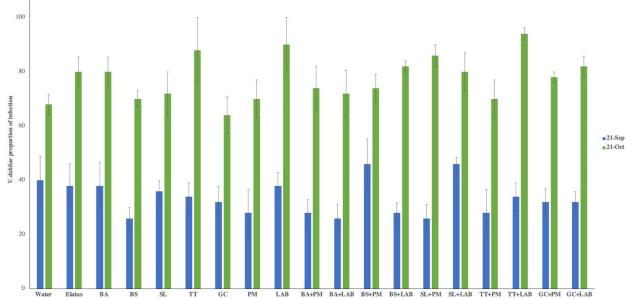
Meanwhile, a total of 100 potato seed pieces were planted in the greenhouse. Each pot was inoculated with around $10^6 V$. *dahliae* conidia/ml and treatments were also applied at planting. *V*. *dahliae* incidence in potato stems was recorded at 30- and 60-days post planting. One stem per pot was collected and taken to the lab for further processing. Stem pieces were disinfected and plated in Verticillium media. Petri dishes were incubated for 15 days under darkness. After 15 days, proportion of *V*. *dahliae* incidence was determined. Percent of infection and verticillium wilt severity was also recorded.


Results and conclusions:

Objective 1: Evaluate the effect of bio fungicides and synthetic fungicides under laboratory conditions on *V. dahliae*

A total of 5 *V. dahliae* microsclerotia were exposed to the respective bio fungicides and controls. After 72 hours of exposure, each microsclerotia was grabbed and plated onto Verticillium agar. After 15 days of incubation under darkness, plates were taken out and with a ruler, we measured the radial growth. We observed neither growth nor production of microsclerotia with Azoxystrobin and Benzovindiflupyr and *G. catenulatum* Str. J1446. Interestingly, out of the *V. dahliae* microsclerotia treated with *T. asperellum* + *T. gamsii*, we observed growth of these *Trichoderma* species on 2 out of the 5 replicates rather than Verticillium, and in 3 out of the 5 replicates, *V. dahliae* growth was lower compared to the other treatments (Table 1).

Treatment Rep 1		Rep 2	Rep 3	Rep 4	Rep 5
Water	3 cm	2.8 cm	3 cm	2 cm	3 cm
Azoxystrobin and	No growth	No growth	No growth	No growth	No growth
Benzovindiflupyr					
<i>B</i> .	3 cm	2.7 cm	3 cm	3.1 cm	2.6 cm
amyloliquefaciens					
str. D747					
B. subtilis	2.5 cm	3 cm	2.5 cm	2.5 cm	2.7 cm
S. lydicus	4.2 cm	2.8 cm	4 cm	4 cm	2.8 cm
T. asperellum + T.	Growth of	1.6 cm +	0.5 cm +	1.4 cm +	Growth of
gamsii	Trichoderma	Trichoderma	Trichoderma	Trichoderma	Trichoderma
G. catenulatum	No growth	No growth	No growth	No growth	No growth
Str. J1446					


Table 1. Radial growth of V. dahliae after 72 h exposure to the respective treatments

Picture 1. Radial growth of V. dahliae microsclerotia when treated with biofungicides. **A)** Water (negative control). **B)** *G. catenulatum* Str. J1446. **C)** *B. amyloliquefaciens* str. D747. **D)** *B. subtilis.* **E)** *S. lydicus.* **F)** *T. asperellum* + *T. gamsii.* **G)** Azoxystrobin and Benzovindiflupyr (positive control).

Objective 2: Determine the effectiveness of bio fungicides and synthetic fungicides alone and in combination with compost and manures under greenhouse setting on *V. dahliae*.

20 treatments, each with 5 replicates were evaluated under greenhouse conditions. Russet Norkotah seed pieces were planted on August 27^{th} with 90% sand and 10% topsoil, for a total of 100 pots. Treatments were applied at planting and after 8 days, pots were inoculated with *V. dahliae*. On September 21^{st} and October 21^{st} , stem samples were taken for further processing in the lab. We observed that there was a significant increase of *V. dahliae* infection from September 21^{st} to October 21^{st} , regardless of treatment (Figure 1).

Figure 1. *V. dahliae* incidence in potato plants under greenhouse conditions. Blue bars correspond to proportion of infection on September 21st and green bars correspond to October 21st.

Picture 2. Symptoms caused by *V. dahliae* on potato. A) September 21st, B) September 30th and C) October 21st.

Note: Is important to mention that we hope to conduct the survey to determine the regional grower's perspective on PED and its management on the next potato meeting

Acknowledgments We would like to thank the Michigan Potato Industry Commission for funding this project.

Assessment of SaniDate 5.0 application and varietal resistance for potato postharvest disease management in Michigan, 2022

Emma Schlachter, Celeste Dmytryszyn, Chris Bloomingdale, Damen Kurzer, Trina VanAtta, David Douches, Ray Hammerschmidt, Chris Long, Jaime F. Willbur; Michigan State University, Department of Plant, Soil and Microbial Sciences

Maintenance of tuber quality over the duration of storage season is important in potato production. In 2021, Michigan produced 20 million cwt of potatoes, with 62% tubers in storage as of December (USDA-NASS, 2021). Postharvest loss occurs each year due to tuber shrinkage and storage disease; in 2020, 8% of stored tubers from December 2019 were reported lost by June the following year. The following experiments were conducted to identify potential management practices to reduce losses to major postharvest diseases.

Materials and Methods

i. Assessment of SaniDate 5.0 on storage disease management

Potato cv. Mackinaw was inoculated with Fusarium sambucinum (Fusarium dry rot), Pythium ultimum (Pythium leak), Phytophthora erythroseptica (pink rot), and Pectobacterium carotovorum (bacterial soft rot), and potato dextrose broth (PDB) as control. Fungal and oomycete cultures (1/4 strength potato dextrose agar and green pea agar, respectively) were grown at ambient room temperature under an 8-hour photoperiod for approximately two weeks. Spore suspensions were prepared in sterile deionized water at a concentration of 2×10^8 conidia or sporangia/ml. Bacterial inoculum was grown in PDB to an optical density corresponding to $8.40 \ge 10^9$ cfu/ml (OD₆₀₀ = 0.3-0.4). Tubers were washed with two rinses in tap water, oneminute submersion in 10% bleach solution, and one rinse in deionized water, and dried overnight before inoculation. Apical and basal sites were inoculated with 10 µl of inoculum suspensions using a Hamilton glass syringe. Three inoculated tubers were placed in plastic mesh bags and suspended within another mesh bag containing ten non-treated tubers. Samples were suspended in bins 8 and 9 (625 cwt each) in at the MPIC Cargill Potato Demonstrations Storage Facility (95% RH, 48°F) for seven months. Four treatment replicates were arranged at pile depths of 0, 4, 8, and 12-ft. Bin 9 was treated 10 days post-loading with SaniDate 5.0 at 0.95 fl. oz per ton of potatoes via fog application (Gun Valley Ag. & Industrial Services, Inc.). After storage, disease development was assessed by measuring symptomatic tissue with a digital caliper.

ii. Assessment of potato varieties and early-stage germplasm for resistance to storage pathogens

Potatoes from 38 research germplasm and commercial lines were tested for resistance to four major postharvest diseases: Fusarium dry rot (*F. sambucinum*) and pink rot (*P. erythroseptica*), Pythium leak (*P. ultimum*), and bacterial soft rot (*P. carotovorum*). Tubers were washed and inoculated as described above. Treated tubers were incubated for 47 days in a growth chamber at 22° C/71°F. Five tuber subsamples per variety x pathogen combination were inoculated at each of two replicate timepoints. Disease tolerance was assessed by measuring symptomatic tissue with a digital caliper. All data were analyzed in a generalized linear mixed model ANOVA (SAS v. 9.4) and mean comparisons conducted using Fisher's Protected LSD (α =0.05).

Results and Conclusions

i. Assessment of SaniDate 5.0 on storage disease management

SaniDate 5.0 treatment did not significantly affect progression of Fusarium dry rot or pink rot in Mackinaw tubers (P > 0.05). Pythium leak and bacterial soft rot inoculations did not result in significant disease development, however, methods have been optimized and will be evaluated in the 2021-22 storage season.



Figure 1. Mean length of symptomatic area measured on Mackinaw tubers seven months post-inoculation. Bars with the same letter are not significantly different based on Fisher's Protected LSD (α =0.05).

ii. Assessment of potato varieties and early-stage germplasm for resistance to storage pathogens

Variable responses were observed in postharvest disease assessments of 38 research and commercial entries (P < 0.05). Research germplasm MSW474-1, MSZ242-13 (B), and MSBB058-1 consistently show resistance to Fusarium dry rot and pink rot. The best lines exhibited only 10-25% of the symptoms observed in the worst performing entries (P < 0.05).

	Fusarium	Dry Rot		Pink	Rot
Variety	Length (mm)	Group	Variety	Length (mm)	Group
MSAA570-3	5.10	g	Petoskey (B)	2.19	g
NY163 (B)	6.66	f-g	Petoskey (A)	6.30	e-g
Snowden (A)	8.00	fg	MSAFB635-15	4.31	fg
Snowden (B)	9.21	e-g	MSAA260-3	5.29	e-g
MSW474-1 (B)	8.13	fg	MSAFB605-4	6.00	e-g
MSZ242-13 (B)	8.41	fg	MSZ242-13 (A)	6.04	e-g
Mackinaw (B)	26.19	b-e	MSBB058-1	6.09	e-g
Mackinaw (C)	9.15	e-g	Snowden (B)	6.60	e-g
MSAA076-6	9.63	d-g	Snowden (A)	13.47	b-e
Lamoka	10.21	d-f	Lamoka	7.69	d-g
Lady Liberty	22.04	d-f	Lady Liberty	8.57	d-g
MSAA217-3	29.89	b-d	Mackinaw (B)	13.20	c-f
MSAFB605-4	38.76	a-c	Mackinaw (C)	11.62	d-f
MSZ219-13	38.90	ab	NY163 (B)	16.63	b-d
Petoskey (A)	40.53	а	NY166	21.96	a-c
Petoskey (B)	8.44	e-g	MSBB610-13	22.33	ab
CO11023-2W	50.84	a-c	MSZ219-13	28.00	а

Table 1. Fusarium dry rot and pink rot symptom lengths (mm) for the best five (blue) and worst four (red) germplasm lines, compared to five standard varieties (bolded). Labels (A), (B), and (C) indicate field trial locations: A) SNAC trial at Sandyland Farms, B) Montcalm Research Center, C) commercial planting at Sackett Potatoes. Nonlabeled varieties originated from MRC. Means followed by the same letter are not significantly different based on Fisher's Protected LSD (α =0.05).

Acknowledgements: We would like to thank our grower cooperators for their continued support in furthering our research. Funding is provided by the Michigan Potato Industry Commission, the Michigan Department of Agriculture and Rural Development Specialty Crop Block Grant, and the USDA National Institute of Food and Agriculture, Hatch project 1020281.

Diagnostic optimization of viral detection and characterization for the Michigan seed potato certification program, 2021

Mio Satoh-Cruz¹, Stefanie Rhodes², Jeff Axford³, Elizabeth Dorman² and Jaime Willbur¹; ¹Michigan State University, Dept. Plant, Soil and Microbial Science, Potato and Sugar Beet Pathology; ²Michigan Department of Agriculture and Rural Development, Pesticide and Plant Pest Management Division, Plant Pathology; ³Michigan Seed Potato Association

Potato virus Y (PVY) is a major concern throughout the US, including the North Central region, and is one of the primary diseases monitored and tested for in the seed certification process. Cost-effective and efficient detection of PVY in early generation potato seed lots will help prevent infected material from entering the production chain and will prevent unnecessary yield and profit loss. The MSU Potato and Sugar Beet Pathology (PSBP) program continues to work with the Michigan Department of Agriculture and Michigan Seed Potato Association seed inspectors to gather strain information from PVY-positive seed lots and also have been collaborating to increase handling capacity, efficiency and optimizing the viral detection and diagnostic protocols used in winter testing. Through this work we continue to: 1) investigate improved detection options to identify accurate, timely, and cost-effective methods for use in the Michigan seed potato certification and 2) monitor PVY strain prevalence in Michigan seed potatoes. The results of this work will help develop standard protocols for high-throughput, instate tuber testing.

Materials & Methods:

Tuber testing methods, which do not require breaking tuber dormancy to sample sprouts or plantlets, were used. General (Mackenzie et al. 2015) and multiplex (Lorenzen et al. 2006, 2010; Chikh-Ali et al. 2013) reverse-transcriptase (RT) high-fidelity polymerase chain reaction (PCR) protocols will be compared to existing plantlet assays involving enzyme-linked immunosorbent assay (ELISA) to validate. In 2021, we selected six Snowden and Lamoka (variable or unreliable symptom expression) and Reveille Russet (reliable expression) seed lots for validation of dormant tuber methods. Samples of 200 tubers were taken from each seed lot. Each variety was sampled from two lots where visual PVY was either present or absent in summer field inspections (Table 1). Dormant tuber RT-PCR testing was conducted on all tubers in 10-tuber subsamples. After treatment with Rindite to break dormancy, subsamples were planted and grown out for standard leaflet ELISA. Subsets of positive samples (from research and commercial testing) will be subject to PVY strain confirmation by RT-PCR.

Results & Conclusions:

In 2021, PVY incidence was lower based on summer visual inspections, compared to 2020. In research lots, dormant tuber methods identified higher levels of PVY than estimated from the summer field inspections (Table 1). This could be due to in-field spread, varietal expression, strain differences, or variety by strain interactions, and stain typing is ongoing. Currently, we are conducting standard grow out methods to validate dormant tuber methods. We are also working to optimize a direct real-time RT-PCR assay (Mackenzie et al. 2015) to increase throughput and efficiency.

Table 1. RT-PCR results from seed lots assessed for PVY incidence based on summer field inspections. Results are based on positive PVY detections (%) using dormant tuber methods in 2021 (N=number of 10-tuber subsamples tested).

Variety	Typical Symptom Expression	N	Visual Summer (Jun-Jul)	Present (+) Absent (-) (Jun-Jul)	Dormant Tuber RT-PCR (Oct-Nov)	Leaflet ELISA Greenhouse (Jan)
Snowden	Unreliable	20	0.06	+	3.50	
Snowden	Unreliable	20	0.00	-	2.84	
Lamoka	Unreliable	18	0.03	+	4.81	T
Lamoka	Unreliable	16	0.00	-	0.00	In progress
Reveille	Reliable	20	0.40	+	6.70	
Reveille	Reliable	20	0.00	-	2.21	

Since 2019, we have developed the capacity to assess the strain types prevalent in Michigan seed growing regions. Our efforts have identified four major PVY strains, including N:Wi (most prevalent), N:O, NTN (tuber necrotic strain), and O. Due to flooding in Florida, the entire 2021-22 Michigan seed certification winter grow-out plots were lost. In place of the standard grow-out, MDARD will offer dormant tuber testing for seed lots intended for recertification and export and will further investigate the PVY strains present in positive samples (N = approx. 20,740 tubers will be tested in 2021-22). Preliminary observations from these samples suggest that PVY^{N-Wi} remains prevalent, however, PVY^{NTN}, PVY^{N:O} were also detected. A second tuber necrotic strain, PVY^E, has since been confirmed and indicates strain frequencies must be closely monitored to best inform the seed potato industry of potential risks.

We also conducting growth chamber assays using characterized PVY strains with elite potato germplasm using previously reported methods by Gundersen et al. (2019). Based on our assessment of PVY strain populations in Michigan, we have selected four characterized strains (N:Wi, NTN, N:O, O) and obtained them from collaborators at the University of Idaho. Six varieties were selected for preliminary experiments: Lamoka, Snowden, Mackinaw, Petoskey, Lady Liberty and MSZ242-13. These varieties represent current chip varieties used in Michigan and elite experimental varieties originating from the MSU Potato Breeding and Genetics program. We are currently optimizing protocols for maintenance of strains in virus-free *Nicotiana tabacum*. However, these preliminary strain by variety experiments will inform the seed potato industry of the yield and quality impacts that current PVY strains may have on prevalent chip varieties. We plan to increase the number of varieties and modify the strain panels used based on current growing practices and strain population assessments. This information will also confirm robust PVY resistance to multiple strains, further informing and directing future breeding efforts.

Acknowledgements:

We would like to thank the Michigan potato growers, the Michigan Potato Industry Commission, the Michigan Seed Potato Association, the Michigan Department of Agriculture and Rural Development, as well as the UDSA-NIFA-SCRI Grant No. 2020-51181-32136 and national Potato Virus Initiative: Developing Solutions for the continued support and productive collaborations necessary to continue this research.

FINAL REPORT

Improvement of Disease Management in Irrigated Potato Fields using Real-Time Sensor Monitoring Systems

Submitted to Michigan Potato Industry Committee

Submitted by

Younsuk Dong¹ Jaime Willbur² Jill Check²

¹Department of Biosystems and Agricultural Engineering

²Department of Plant, Soil and Microbial Science

Michigan State University East Lansing, MI 48824

January 10, 2022

Summary

- Two irrigated potato fields in Mecosta and Montcalm County were monitored in 2021. Sensor stations were installed to monitor soil and environmental conditions in an irrigated area and a dryland area of each site.
- Soil moisture sensors were able to track the soil moisture levels in the potato root zone. Data showed the potential use of soil moisture sensors in irrigated potato fields to improve irrigation water use efficiency. In 2022, a sensor-based irrigation scheduling method will be demonstrated in two commercial potato fields to evaluate its benefits, such as saving water and energy, improving yield and quality, and reducing the potential risk of plant disease.
- Apothecia development was monitored weekly in Mecosta and Montcalm County sites. Both locations have a history of white mold pressure, and the precipitation events that occurred at Montcalm may have contributed to the higher apothecia density found. In 2022, field data collection will be continued to support a robust model development for Michigan potato growers to manage infection by white mold.

Introduction

Potatoes benefit from irrigation management because of the significant effect of irrigation on both yield and quality. A shallow root zone combined with daily evapotranspiration makes precise irrigation of potatoes difficult. Not watering the potatoes sufficiently can result in yield loss and cause misshapen tubers, vascular necrosis, or hollow heart defects. Improper irrigation schedules or unnecessary irrigation can waste resources, but can also increase the potential risk of plant diseases. Plant disease can substantially reduce yield and quality of product, and even more importantly impact it during the storage, which are negatively affecting the sustainability and economics of production. Potatoes are impacted significantly by diseases, which can also be driven through increased relative humidity and leaf wetness durations, reduced canopy and soil temperatures, or improper irrigation. Some of the most devastating foliar and vine rotting diseases are early blight, late blight, white mold, and bacterial stem rot or blackleg. In tubers, irrigation has been shown to influence black scurf, silver scurf, and common scab diseases. Excessive soil moisture at critical points can drive foliar, vine, or root and tuber infections and promote pathogen development, reproduction, dispersal, and survival. Proper irrigation management is needed to maximize water use efficiency while minimizing the risk of plant disease.

Field Experimental Setup

Two irrigated potato fields were monitored in 2021. Monitoring fields were located in Mecosta and Montcalm county, MI. LOCOMOS (Low-Cost sensor Monitoring System) stations were used to monitor soil moisture level, soil temperature, leaf wetness duration, temperature, humidity, precipitation, and irrigation. The measurement has been recorded every 15 minutes. In each monitoring field, one LOCOMOS was installed in an irrigated area, and the other station was installed in a dryland area.

Figure 1. Installed LOCOMOS in Mecosta (Left) and Montcalm (Right) County sites.

Data Collection

The LOCOMOS sensor data has been monitored in real-time through LOCOMOS IoT (Internet of Things) website (Figure 2). The equations have been embedded into the website to calculate the daily leaf wetness duration, average daily temperature, average daily humidity, and average daily soil temperature. Irrigation and precipitation are also tracked by rain gauges. A graduate student has routinely conducted apothecia counts (Figure 3).

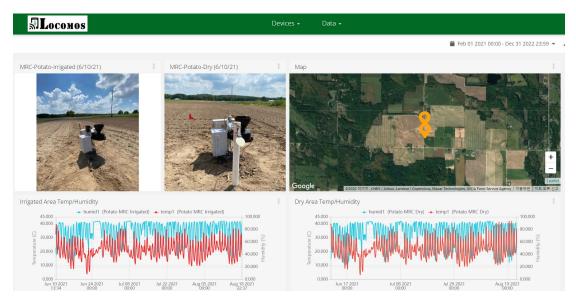


Figure 2. One of the LOCOMOS IoT website interfaces that display the sensor data and algorithm outputs in real-time.

Figure 3. Apothecia (mushrooms) on the soil surface in Mecosta County site.

Potential Use of Soil Moisture Sensors to Manage Irrigation in Potato Fields

Soil moisture sensors were able to track the soil moisture levels at 6 and 12 inch depths in irrigated potato fields. The data shows the potential use of soil moisture sensors to determine when and how much to irrigate for potato production. Figure 4 shows the composite soil water available in irrigated and dryland areas. If the soil water available is greater than the field capacity level, there is an increased risk of water and nitrate leaching below the root zone. In several events, the soil water available level in the irrigated area (blue) was above the field capacity. The team believes that more precise and real-time soil moisture level monitoring can improve irrigation water use efficiency in this potato field. In 2022, the team plans to demonstrate a sensor-based irrigation scheduling method in two commercial potato fields to improve water use efficiency and estimate the evaluate benefits, such as saving water and energy, improving yield and quality, and reducing the risk of plant disease.

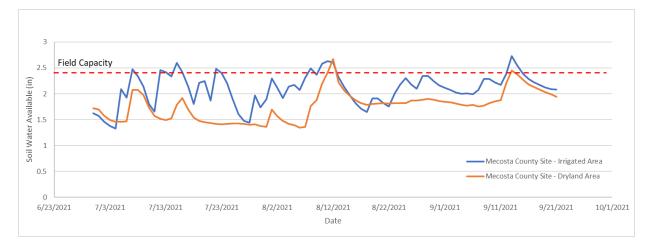


Figure 4. Composite soil water available (0-18 inch soil depth) in irrigated land and dryland area.

Figures 5 and 6 show the average daily soil moisture levels at 6 inch depth in Mecosta and Montcalm County sites. The data shows that average daily soil moisture levels in the irrigated area were generally higher than dryland areas in both Mecosta and Montcalm County sites. Based on the soil moisture data, irrigation was able to maintain the soil moisture levels at optimal condition (8 - 12%) in Mecosta County site throughout the growing season. This confirms the benefits of irrigation, which provides adequate moisture to potatoes.

Figure 5. Average daily soil moisture level at 6 inch soil depth in Mecosta County site.

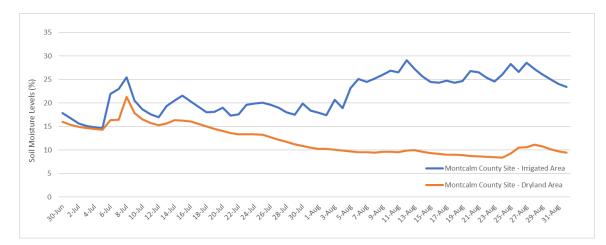


Figure 6. Average daily soil moisture level at 6 inch soil depth in Montcalm County site.

Disease Monitoring

Sporecaster is a model used to manage white mold of soybean, caused by *Sclerotinia sclerotiorum*, by predicting the presence of apothecia to optimally time fungicide applications. Potatoes are vulnerable to white mold infection during flowering, and Sporecaster has not been validated for use in potato fields. Monitoring the performance of Sporecaster since its release has shown that it needs refinement for use in irrigated fields. In 2021, data collection began to prepare for the refinement of Sporecaster under irrigation and to assess it's accuracy in irrigated potato fields.

Two irrigated potato fields were monitored weekly for apothecia development. Monitoring took place from 7/9/21 to 8/23/21 for a total of 245 observations. During each site visit, apothecia were counted, and canopy closure was measured. Canopy closure is a major determinant apothecium development and incorporating canopy closure into the model may help capture differences in the timing of apothecia emergence between crops. Weather stations were deployed to capture temperature, relative humidity, precipitation, leaf wetness, soil moisture soil temperature and the timing and magnitude of irrigation events. We were able to distinguish between irrigation and precipitation by installing rain gauges in an irrigated area and a dryland area within the field.

At the Montcalm County site, apothecia density was greatest between the last week of July (7/27) and the second week of August (8/9) (Figure 7). Apothecia density peaked early August (8/2) at 4.05 apothecia/m². At the Mecosta County site, apothecia density was far lower compared to the Montcalm County site. Apothecia density was low throughout the scouting period (7/9 – 8/19) but peaked mid-July (7/17) at 0.58 apothecia/m². At Montcalm County, major precipitation events preceded the first findings of apothecia. Both locations have a history of white mold pressure, and the precipitation events that occurred at Montcalm may have contributed to the higher apothecia density found.

At both locations, the model underestimated risk of apothecia throughout the monitoring period with a success rate of 36%. Typically, good models aim for 70-80% accuracy. These results demonstrate a need for further of Sporecaster refinement for irrigated acres and for potato fields. In 2022, field data collection will be continued to support a robust model development for Michigan potato growers to manage infection by white mold.

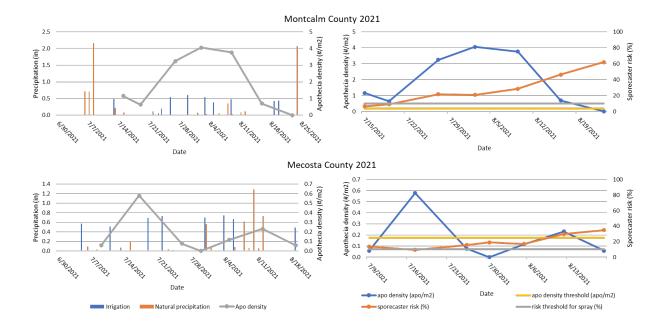


Figure 7. Left; Apothecia density plotted against irrigation (blue) and natural precipitation (orange). Right; Risk of apothecia predicted by Sporecaster (orange) and apothecia density (blue) throughout the monitoring period. The gray line represents the risk threshold recommended for a fungicide spray (10%). The yellow line represents the apothecia density threshold recommended for a fungicide spray (0.13 apothecia/m²).

2020-2021 MICHIGAN POTATO DEMONSTRATION STORAGE ANNUAL REPORT MICHIGAN POTATO INDUSTRY COMMISSION

Chris Long, Coordinator, Trina VanAtta, and Damen Kurzer

Introduction and Acknowledgements

Round white potato production for chip processing continues to lead the potato market in Michigan. Michigan growers continually look for promising new round white varieties that meet necessary production and processing criteria. There are many variety trials underway in Michigan that evaluate chipping varieties for yield, solids, disease resistance, desired tuber size profile and chipping quality with the hope of exhibiting the positive attributes of these lines to growers and processors. Extended storage chip quality and storability are highly important in round white potato production. Therefore, any new chip processing varieties with commercialization potential will have storage profiles developed. Examining new varieties for long-term storage and processing quality keeps the Michigan chip industry at the leading edge of the snack food industry. The information in this report allows the industry to make informed decisions about the value of adopting these varieties into commercial production.

The Michigan Potato Industry Commission (MPIC) Potato Demonstration Storage Facility currently consists of two structures. The first building, the Dr. B. F. (Burt) Cargill Building, constructed in 1999, allows the Michigan potato industry to generate storage and chip quality data on newly identified chip processing clones. This information helps to establish the commercial potential of new varieties. This demonstration storage facility utilizes six, 550 cwt. bulk bins (Bins 1-6) that have independent ventilation systems. The Ben Kudwa Building, built in 2008, has three independently ventilated, 600 cwt. bulk bins. The first of these bulk bins, bin 7, was converted to box bin storage that holds 36, 10 cwt. box bins to provide storage profiles on early generation potato varieties. The box bin is an entry point into storage profiling that allows the industry to learn about a variety's physical and chemical storability before advancing to the bulk bin level. A variety is evaluated for 4-6 years before entering box bin testing. In the variety development process, little information has been collected about a varieties' physical storability or chemical storage profile prior to being included in the box bin trial. A storage profile consists of monthly or bi-weekly sampling of potatoes to obtain sucrose

and glucose levels, chip color and defect values. In addition, we evaluate each variety for weight loss or shrinkage and pressure bruise. With this information, we can create the storage profile of a variety, providing the industry with a clearer picture of where a line can or cannot be utilized in the snack food industry. The Michigan potato industry hopes to use these storage profiles to improve in areas such as long-term storage quality, deliverability of product and, ultimately, sustained market share.

The two remaining 600 cwt. bulk bins in the second structure are used to evaluate the postharvest physiology of potatoes. The facility can be used to evaluate storage pathology or sprout inhibitor products. The Michigan industry recognizes the importance of controlling disease and sprout development in storage and is committed to doing research in these areas.

This sixteenth annual Demonstration Storage Report contains the results of the storage work conducted in the facility during the 2020-2021 storage season. Section I, "2020-2021 New Chip Processing Variety Box Bin Report", contains the results and highlights from our 10-cwt. box bin study. Section II, "2020-2021 Bulk Bin (500 cwt. bin) Report," shows bulk bin results, including information from commercial processors regarding these new varieties.

The storage facility, and the work done within it, is directed by the MPIC Storage and Handling Committee and Michigan State University (MSU) faculty. The funding and financial support for this facility, and the research conducted within it, is largely derived from the MPIC. The committee occasionally receives support for a given project from private and/or public interests.

We wish to acknowledge all the support and investment we receive to operate and conduct storage research. First, we express our gratitude for the partnership we enjoy between the MPIC and Michigan State University. Thank you to the MPIC Storage & Handling Committee for their investment of time, guiding the decisions and direction of the facility. Brian Sackett, Sackett Potatoes; Todd Young, and Chase Young, Sandyland Farms; Jeff Thorlund, Thorlund Brothers Farm; and Karl Ritchie and Brice Stine of Walther Farms for provided the material to fill the bulk bins this year; without their willingness to be involved, we could not have accomplished our objectives. Equal in importance are the processors who invested in this research. They are Mitch Keeney, Jim Fitzgerald and Jack Corriere of UTZ Quality Foods, Inc.,

131

Hanover, PA; Chris and Ed Girrback of Great Lakes Potato Chip Co., Traverse City, MI, Jake Lake of Snyder Lance, Hyannis, MA, and Al Lee and Phil Gusmano of Better Made Snack Foods, Detroit, MI. It has been a great pleasure to work with all of you. Special thanks to Butch Riley (Gun Valley Ag. & Industrial Services, Inc.) for his annual investment in the sprout treatment of the storage facility. We would also like to acknowledge a long list of additional contributors who invested much time to help foster a quality storage program: Dr. Dave Douches and the MSU Potato Breeding and Genetics Program, Todd Forbush (Techmark, Inc), Mathew Klein (Farm Manager, MSU Montcalm Research Center), and Tim and Matt Wilkes (Potato Services of Michigan). All played a role in making this facility useful to the Michigan potato industry.

Overview of the 2020 Production Season

The overall 6-month average maximum and minimum temperatures during the 2020 growing season in central Michigan was approximately average compared to the 15-year average temperatures. May generally had cooler minimum temperatures than average while July had warmer minimum temperatures than average (Table 1). Maximum temperatures were slightly cooler than average in all months excluding May. Extreme heat events were above average in 2020, with 13 hours over three days exceeding 90°F during the summer (Table 2). This was higher than it has been in the past three years. High nighttime temperatures (over 70°F) were also above average with 125 hours over 31 days.

Rainfall for April through September was 19.04 inches, 1.17 inches above the 15-year average (Table 3). May and July were rainier than average, each month had more than one inch of additional rainfall than the 15-year average. June and August were drier than average with one inch less of rainfall than the 15-year average.

	Ap	oril	M	ay	Ju	ne	Ju	ly	Aug	gust	Septe	mber	Ave	erage
Year	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
2006	62	36	61	46	78	54	83	61	80	58	68	48	72	51
2007	53	33	73	47	82	54	81	56	80	58	76	50	74	50
2008	61	33	67	40	77	56	80	58	80	54	73	50	73	49
2009	56	33	67	45	76	54	75	53	76	56	74	49	71	48
2010	64	33	70	49	77	57	83	62	82	61	69	50	74	52
2011	53	33	68	48	77	56	85	62	79	58	70	48	72	51
2012	58	33	73	48	84	53	90	62	82	55	74	46	77	50
2013	51	33	73	48	77	55	81	58	80	54	73	48	73	49
2014	55	33	68	45	78	57	77	54	79	56	72	47	72	49
2015	58	33	71	48	76	54	80	56	77	57	77	54	73	51
2016	53	32	70	45	78	53	82	60	85	60	78	54	74	51
2017	61	39	67	44	78	55	81	58	77	54	77	50	74	50
2018	55	33	81	46	84	58	88	64	84	63	76	52	78	53
2019	55	35	65	45	75	54	84	69	80	55	73	54	72	52
2020	56	29	76	35	77	54	81	68	78	60	70	48	73	49
15-Year														
Average	57	33	70	45	78	55	82	60	80	57	73	50	73	50

Table 1. The 15-year summary of average maximum and minimum temperatures (°F) during the growing season at the Montcalm Research Center.*

Table 2. Six-year heat stress summary (from May 1^{st} – Sept. 30^{th})*

			Night (10)pm-8am)
	Temperatu	$res > 90^{\circ}F$	Temperatu	$res > 70^{\circ}F$
Year	Hours	Days	Hours	Days
2015	0	0	114	31
2016	10	3	147	31
2017	14	3	80	18
2018	12	4	123	31
2019	5	2	105	20
2020	13	3	125	31
Average	9	3	116	27

Year	April	May	June	July	August	September	Total
2006	2.73	4.45	2.18	5.55	2.25	3.15	20.31
2007	2.64	1.60	1.58	2.43	2.34	1.18	11.77
2008	1.59	1.69	2.95	3.07	3.03	5.03	17.36
2009	3.94	2.15	2.43	2.07	4.74	1.49	16.82
2010	1.59	3.68	3.21	2.14	2.63	1.88	15.13
2011	3.42	3.08	2.38	1.63	2.57	1.84	14.92
2012	2.35	0.98	0.99	3.63	3.31	0.76	12.02
2013	7.98	4.52	2.26	1.35	4.06	1.33	21.50
2014	4.24	5.51	3.25	3.71	1.78	2.35	20.84
2015	3.71	2.96	4.79	1.72	2.42	3.90	19.50
2016	2.25	2.77	1.33	3.42	5.35	3.05	18.17
2017	4.45	1.98	6.37	0.92	1.36	0.70	15.78
2018	2.04	5.51	3.64	1.19	7.73	2.65	22.76
2019	2.64	5.46	2.90	2.04	3.31	5.72	22.07
2020	3.49	4.75	1.40	4.07	2.21	3.12	19.04
15-Year							
Average	3.27	3.41	2.78	2.60	3.27	2.54	17.87

Table 3. The 15-year summary of precipitation (inches per month) recorded during the growing season at the Montcalm Research Center.*

*Weather data collected at the MSU Montcalm Research Center, Entrican, MI.

I. 2020-2021 New Chip Processing Variety Box Bin Report

(Chris Long, Trina VanAtta, Damen Kurzer, and Brian Sackett)

Introduction

This project evaluated new chip processing varieties from national and private breeding programs for processing quality after storage conditions. We evaluated a variety's response to pile temperature, as reflected in sucrose and glucose levels, as well as weight loss and pressure bruise susceptibility. Bin 7 contains 36 10 cwt. boxes. We organized the 36 boxes into six stacks of six. The box design allows air to travel in from a header, or plenum wall, through the forklift holes of each box and up through the potatoes within it. The air continues to flow up through the next box until it reaches the top and is drawn off the top of the chamber. The air is then reconditioned and forced back through the header wall plenums and up through the boxes again. Each box contains a sample door facing the center aisle from which we sampled tubers for bi-weekly or monthly quality evaluations.

Procedure

In 2020, we evaluated and compared 34 new varieties to the check variety Snowden. Once the varieties were chosen, 1 cwt. of most varieties were planted in a single 34-inch wide row. Some varieties were planted on one half of a row for monthly sampling. Planting occurred on May 7th at the MSU Montcalm Research Center, Entrican, MI. We planted the varieties at a 10" in-row seed spacing. All varieties received the following fertilizer: 273 lb. N/A, 98 lb P₂O₅/A and 261 lb K₂O/A. The varieties were vine killed after 116 days and allowed to set skins for 21 days before harvest on September 21st, 2020, which was 137 days after planting. We did not account for variety maturity in harvest timing due to storage and handling restrictions.

We placed approximately 10 cwt. of each variety in a box bin and stacked the boxes in Bin 7. For varieties sampled monthly, approximately eight trays of tubers were stacked on top of the box bins. The average storage temperature for all the box bins was 54.0°F for the 2020-2021 season. At harvest, we collected nine, 20 lb. samples from each full row variety for weight loss and pressure bruise evaluation. We describe the varieties, their pedigree and scab ratings in Table 4. We also recorded yield, size distribution, chip quality, and specific gravity at harvest in Table 5. We graded the varieties to remove all "B" size tubers and pickouts, ensuring the tubers began storage in good physical condition.

The storage season began September 21st, 2020 and ended June 7th, 2021. Bin 7 was gassed with CIPC on October 18th and February 19th. We began variety evaluations on September 21st, followed by a bi-weekly or monthly sampling schedule until early June. We randomly selected forty tubers from each box every two weeks and sent them to Techmark, Inc. for sucrose, glucose, chip color and defect evaluation. We also evaluated pressure bruising by placing nine pressure sample bags for each variety in one of the bulk bins at the storage facility. We placed three bags at each of 3', 8' and 14' from the pile floor. When that bin was unloaded, we weighed the sample bags for the presence or absence of pressure bruise. We recorded the number of tubers and severity of bruise. All pressure bruises were evaluated for discoloration.

This report is not an archive of all the data that we generated for the box bin trial, but rather a summary of the data from the most promising lines. The purpose of this report is to present a summary of information from the best performing lines from this trial that will be moved along the commercialization process. If more detailed information is desired, please contact Chris Long at Michigan State University in the Department of Plant, Soil and Microbial Sciences for assistance at (517) 355-0277 or longch@msu.edu. Additional data is available on the program website, canr.msu.edu/potatooutreach.

Entry	Pedigree	2020 Scab Rating*	Characteristics
Lady Liberty (Niagara, NY152)	B38-14 X Marcy	2.5	Medium netted skin type, smaller round and uniform tuber size profile, good off the farm chip quality, average yield.
Mackinaw (MSX540-4)	Saginaw Chipper X Lamoka	2.0	Medium netted skin, Lamoka type and appearance, earlier vine maturity, higher specific gravity, smaller tuber size profile.
Petoskey (MSV030-4)	Beacon Chipper X MSG227-2	2.0	Round, flattened type, medium netted skin, earlier vine maturity, average yield potential, darker off the farm chip color.
Snowden (W855)	B5141-6 X Wischip	3.0	Very low yield with high percentage B- sized tubers, lower specific gravity, moderate common scab, earlier vine maturity.
COOR13270-2	Winterset x CO02024-9W	4.5	Round to oval type, lighter skin, slight growth crack, full-season maturity, severe common scab, low specific gravity, below average yield.
MSAA076-6	MSR127-2 x MSS297-3	1.0	Flat to round type, slight alligator hide, slight internal brown spot, high percentage A-sized tubers, average yield potential.
MSAA217-3	Beacon Chipper x Atlantic	2.0	Medium netted skin, slight pinkeye, high specific gravity, moderate hollow heart, average yield potential.

Table 4. 2020-2021 MPIC Demonstration Chip Box Bin Variety
Descriptions

Entry	Pedigree	2020 Scab Rating*	Characteristics
MSAA260-3	MSQ086-3 x Atlantic	2.5	High yield potential, slight growth crack, average specific gravity, moderate hollow heart, earlier vine maturity, moderate common scab.
MSAA373-3	NY148 x McBride	2.0	Flat round tuber type, high specific gravity, full season maturity, good internal quality, average yield potential.
MSAA570-3	MSV313-1 x Lamoka	2.5	Less uniform tuber type, earlier vine maturity, lower specific gravity, smaller tuber size profile and lower yield.
MSAFB605-4	NY148 x MSV241-2	1.5	Uniform round tuber type, heavy netted skin, average specific gravity, high percentage A-sized tubers, average yield.
MSAFB609-12	NY148 x MSQ086-3	3.5	Lower specific gravity, common scab susceptible, average yield, smaller tuber size profile.
MSAFB635-15	NYH15-5 x MSS297-3	2.0	Small, uniform tuber type, medium netted skin, higher specific gravity, above average yield, higher percentage B-sized tubers.
MSAFB635-3	NYH15-5 x MSS297-3	2.5	Round type, lighter skin color, slight hollow heart, moderate common scab, higher yield potential.
MSBB058-1	NY148 x MSR127-2	0.5	Medium netted skin, uniform type, flat to round shape, higher specific gravity, earlier vine maturity, lower yield potential.

Entry	Pedigree	2020 Scab Rating*	Characteristics
MSBB610-13	NY148 x MST096- 2Y	1.5	Attractive appearance, blocky oval type, earlier vine maturity, lower specific gravity, slight internal brown spot.
MSV498-1	Snowden x MSQ283-2	0.5	Heavier skin, deep apical eyes, Manistee type and appearance, moderate hollow heart and vascular discoloration, lower specific gravity, above average yield.
MSW474-1	MSN190-2 x MSP516-A	2.0	Round type, medium netted skin, uniform, full season maturity, average yield, good internal quality.
MSX225-02	MSK061-4 x Nicolet	2.0	Medium netted skin, round to oval, uniform tubers, smaller tuber size profile, lower yield.
MSY156-2	MSK061-4 x Kalkaska	2.0	Small and round tubers, uniform appearance, lower specific gravity, lower yield, good internal quality.
MSZ063-2	MSR148-4 x McBride	2.0	Bright smooth skin, earlier vine maturity average specific gravity, darker off the farm chip color, higher percentage B- sized tubers.
MSZ120-04	Kalkaska x MSQ08603	1.5	Deeper apical eyes, higher percentage Assized tubers, above average yield, good internal quality.
MSZ242-07	MSR169-8Y x MSU383-A	1.5	Non uniform type, slight growth crack, average yield potential, very high specific gravity, lower stem end defect rating.

Entry	Pedigree	2020 Scab Rating*	Characteristics	
MSZ242-09	MSU169-8Y x MSU383-A	1.5	Heavier netted skin, slight alligator hide, average yield potential, higher specific gravity, darker off the farm chip color.	
MSZ242-13	MSR169-8Y x MSU383-A	2.0	Flattened round to oval type, medium netted skin, very high specific gravity, below average yield.	
NY163 (L7-2)	NYE50-8 x NYE48-2	2.5	Small tuber size profile, round, lighter skin, moderate common scab, earlier vine maturity, smaller vine type.	
NY165 (M8-5)	NY148 x NYF48-4	2.0	Uniform round type, netted skin, attractive appearance, full season maturity, below average yield, higher percentage B-sized tubers.	
NY166 (N16-11)	NY140 x E48-2	2.5	Oval to pear shaped tubers, less uniform type, moderate common scab, smaller tuber size profile, good internal quality.	
NYOR14Q9-9	Eva x H25-4	3.0	Flattened oval type, lighter skin, moderate common scab, slight hollow heart, average yield potential.	
WAF10664-3	Superior x W6609-3	1.0	Round, uniform tuber type, slight vascular discoloration, low specific gravity, average yield potential.	

*Scab rating based on 0-5 scale; 0 = most resistant and 5 = most susceptible. Common scab data and qualitative descriptions provided by Potato Outreach Program (P.O.P.), MSU Potato Breeding and Genetics Program and other potato breeding programs.

Table 5. 2020 Storage Chip Processing Potato Variety Trial

Montcalm Research Center Chip Box Bin

Planting: 5/7/20 Vine Kill: 8/31/20 Harvest: 9/21/20 and 9/22/20

GDD₄₀: 3335

										GDD ₄₀	. 5555			COMMON				
	c	WT/A		PFR	ENT OF T	OTAI ¹			OTF CHIP		RAW TUBER		(%)	SCAB	SED	VINE	VINE	
LINE	 US#1	TOTAL	US#1	Bs	As	ov	PO	SP GR ²	SCORE ³	нн	VD	IBS	BC	RATING ⁵	SCORE ⁶	VIGOR ⁷	MATURITY ⁸	COMMENTS
Lady Liberty	293	336	87	13	87	0	0	1.079	1.0	0	0	0	0	2.5	0.4	1.0	3.0	med netted skin, smaller round uniform type
Mackinaw	237	305	78	21	78	0	1	1.089	3.0	0	0	0	0	2.0	0.5	2.0	2.0	med netted skin, lamoka type
Petoskey	295	338	87	13	87	0	0	1.083	2.5	0	0	0	0	2.0	0.9	1.0	2.0	round flat type, med netted skin
MSZ120-04	344	389	88	10	88	0	2	1.081	2.0	0	0	0	0	1.5	0.5	1.5	3.5	deeper apical eyes, misshapen pos
MSAA260-3	340	371	92	5	92	0	3	1.082	2.5	20	0	0	0	2.5	1.1	2.0	2.0	gc in pos
MSV498-1	337	384	88	9	88	0	3	1.077	1.5	20	10	0	0	0.5	0.4	1.5	2.5	heavier skin, deeper apical eyes, Manistee type
MSAFB635-3	325	373	87	12	87	0	1	1.081	1.5	10	0	0	0	2.5	0.6	3.0	1.0	round, ligher skin type
MSZ242-07	311	353	88	6	88	0	6	1.098	1.5	0	0	0	0	1.5	0.2	1.5	3.0	non uniform type, gc in pos
MSAFB635-15	302	409	74	25	74	0	1	1.091	3.0	0	0	0	0	2.0	0.7	2.0	3.0	small uniform type, med netted skin
MSW474-1	288	397	72	28	71	1	0	1.083	1.5	0	0	0	0	2.0	0.6	3.0	4.0	round type, med netted skin, uniform
NYOR14Q9-9	284	340	83	16	83	0	1	1.081	2.0	10	0	0	0	3.0	1.2	2.5	2.0	flat round to oval type, lighter skin, misshapen pos
MSZ242-09	283	321	88	7	88	0	5	1.087	2.5	0	0	0	0	1.5	0.7	2.0	2.5	heavier netted skin, less uniform, sl ah
MSAFB605-4	282	304	93	6	93	0	1	1.083	1.5	0	0	0	0	1.5	0.6	1.5	3.5	uniform round type, heavy netted skin
MSAFB609-12	281	349	80	20	80	0	0	1.079	1.5	0	0	0	0	3.5	0.6	2.0	3.0	
MSAA076-6	273	332	82	13	82	0	5	1.085	1.5	0	0	10	0	1.0	0.4	2.0	2.5	flat to round, misshapen pos, sl ah
WAF10664-3	263	314	84	14	84	0	2	1.075	1.0	0	10	0	0	1.0	0.6	3.0	1.0	round uniform tuber type
NY163	263	332	79	17	79	0	4	1.083	1.5	0	0	0	0	2.5	0.6	1.5	1.5	small, round, light skin
MSAA217-3	257	280	92	7	92	0	1	1.091	1.5	20	0	0	0	2.0	0.7	2.0	3.0	sl pinkeye, med netted skin
MSAA373-3	246	307	80	13	80	0	7	1.091	3.5	0	0	0	0	2.0	0.6	1.5	4.0	flat round tuber type
MSX225-02	239	311	77	23	77	0	0	1.083	1.5	0	10	0	0	2.0	0.4	3.0	3.0	med netted skin, uniform round to oval
MSBB610-13	228	246	93	7	93	0	0	1.077	1.5	0	0	10	0	1.5	0.4	2.0	1.5	nice apperance, blocky oval
MSZ242-13	222	256	87	13	87	0	0	1.096	2.0	0	0	0	0	2.0	0.3	2.0	3.0	flat, round to oval, med net skin
MSBB058-1	220	264	83	15	83	0	2	1.092	1.5	0	0	0	0	0.5	0.3	2.0	1.5	med netted skin, flat to round, uniform type
MSY156-2	218	274	80	20	80	0	0	1.078	2.5	0	0	0	0	2.0	0.8	2.5	3.5	small and round, uniform, med netted skin
MSAA570-3	210	266	79	16	79	0	5	1.077	2.0	0	0	0	0	2.5	0.7	2.0	2.0	less uniform
NY165	210	312	67	31	67	0	2	1.081	1.0	0	0	0	0	2.0	0.5	2.5	4.0	uniform, round, netted skin, nice appearance
NY166	203	364	56	41	56	0	3	1.080	1.0	0	0	0	0	2.5	0.5	3.5	3.5	non uniform type, oval to pear shaped
MSZ063-2	202	279	72	27	72	0	1	1.083	2.5	0	0	0	0	2.0	0.4	1.5	1.0	bright smooth skin
COOR13270-2	193	280	69	30	69	0	1	1.074	2.5	0	0	0	0	4.5	0.6	3.0	4.0	round to oval, lighter, sl gc
Snowden	143	244	59	40	59	0	1	1.077	2.0	0	0	0	0	3.0	0.4	2.0	1.0	, , , , ,
	MEAN 260	321	81	17	81	0	2	1.083	1.9	3	1	1	0	2.1	0.6	2.1	2.6	
¹ SIZE	² SPECIFIC GRAVITY ³ OUT OF THE FIELD CHIP COLOR SCORE				⁴ RAW TI	IBER QUALITY	,		5COMMON	SCAB RATI	NG			⁶ SED (STEM END DEFECT) SCORE				
	SPECIFIC GRAVITY OUT OF THE FIELD CHIP COLOR SCOR			IN SCORE								<u> </u>						

¹ SIZE	² SPECIFIC GRAVITY	³ OUT OF THE FIELD CHIP COLOR SCORE	⁴ RAW TUBER QUALITY		5COMMON SCAB RATING
Bs: < 1 7/8"	Data not replicated	(SNAC Scale)	(percent of tubers out of 10)		0.0: Complete absence of surface or pitted lesions
As: 1 7/8" - 3 1/4"		Ratings: 1 - 5	HH: Hollow Heart		1.0: Presence of surface lesions
OV: > 3 1/4"		1: Excellent	VD: Vascular Discoloration		2.0: Pitted lesions on tubers, though coverage is low
PO: Pickouts		5: Poor	IBS: Internal Brown Spot		3.0: Pitted lesions common on tubers
			BC: Brown Center		4.0: Pitted lesions severe on tubers
					5.0: More than 50% of tuber surface area covered in pitted lesions
⁷ VINE VIGOR RATING		⁸ VINE MATURITY RATING	FIELD DATA		
Date: 6/18/20		Date: 8/31/20	Planting date	5/7/20	
Rating 1-5		Rating 1-5	Vine Kill Date	8/31/20	
1: Slow emergence		1: Early (vines completely dead)	Harvest Date	9/21/20 and	d 9/22/20

Days (planting to vine kill)

Days (planting to harvest)

GDD₄₀ (planting to vine kill)

GDD₄₀ MAWN Station

Seed Spacing

5: Late (vigorous vines, some

flowering)

5: Early emergence (vigorous vines, some

flowering)

116

137

3335 10"

Entrican

0: No stem end defect 1: Trace stem end defect 2: Slight stem end defect 3: Moderate stem end defect 4: Severe stem end defect 5: Extreme stem end defect

Results: 2020-2021 Chip Processing Box Bin Highlights

MSZ242-13

This variety has been evaluated by the Potato Outreach Program since 2016. At harvest, the specific gravity was 1.096, above the trial average of 1.083. The US#1 yield was 222 cwt/A, slightly below average (Table 5). Two pre-harvest samples were taken on August 17th and August 31st in which increasing glucose and decreasing sucrose indicated potential chemical immaturity. This variety exhibited mid-season maturity, average common scab incidence, and a higher percentage of US#1 tubers. It had acceptable out of the field chip quality, with a 2.0 chip score and less stem end defect than the trial average. Sucrose concentrations were initially high, gradually decreased through April, and then rose through the end of storage in June. Glucose concentrations were more stable, fluctuating between 0.001% and 0.003% during storage. There were only two samples with undesirable color, both below five percent. Internal chip color was also very good, with only the last sample displaying 7.2% internal color. Most samples had ten percent or less internal defects, and six samples had no defects observed, which mainly occurred in samples taken before February. Techmark noted seven samples with bruising. This variety maintains good chip quality through early June and continues to demonstrate long term storage potential in Michigan. It is being further evaluated in the 2020-2021 Box Bin and Bulk Bin trials.

Figure 1. MSZ242-13 chip samples at the first processing date (9/21/20) and last processing date (6/7/21).

NY163

This Cornell University variety has been evaluated in 2016, 2019, and 2020 by the Potato Outreach Program. It had an average yield potential of 263 cwt/A US#1 tubers. It also had an average specific gravity of 1.083, but a below average off the farm chip color of 1.5 with an average stem end defect score. Between the two pre-harvest samples, increasing glucose and decreasing sucrose indicated potential chemical immaturity. During initial bin cooling the sucrose concentration began to decrease, reaching its lowest concentration in early March at 0.370 (X10). Sucrose concentration then rose at each sample, ending at 1.275 (X10) on 5/10/21, the final sample date. Glucose remained low and stable until late April, after which it rose in the final three samples. Chip color was excellent during storage, with only one incidence of internal color in late April. However, internal color was initially excellent but then sharply rose in the last two samples, ending at 33.4% internal color defects. Correspondingly, total defects were low during most of storage, but rose in the final chip samples. Chip quality was good from September to early April but quickly decreased through May. This variety will be further evaluated in the 2020-2021 Box Bin trial, as it demonstrates long-term storage potential with minimal chip defects until April.

Figure 2. NY163 chip quality on last acceptable sample date, 4/5/21 (left) and last storage sample, 5/10/21 (right).

MSAA260-3

This Michigan State University variety was first evaluated by the Potato Outreach Program in 2020. It had an above average US#1 yield of 340 cwt/A and higher than average total yield of 371 cwt/A in the 2020 Box Bin trial. It had 92% A-sized tubers, higher than the trial average of 81%. The specific gravity was slightly lower than the trial average, and the fresh chip score of 2.5 was darker, and therefore less acceptable than average. Twenty percent hollow heart was observed in 2020. This variety produces a smaller vine with earlier vine maturity. Stable glucose and decreasing sucrose indicate chemical maturity at harvest. Sucrose concentrations were initially high in early storage, and while concentrations fluctuated, they followed a generally decreasing trend through late March. After this time, sucrose concentrations rose with each sample, ending at 0.869 (X10) on 5/27/21.Glucose concentrations were generally variable, with high levels observed in late January and late March. Undesirable color and internal color defects were typically below twelve percent at each sample. Total chip defects were initially high, with 75.4% defects observed in late November. Defects were then lower through February, rose again, and finally decreased through early May. Most of the chip defects were stem end defect. MSAA260-3 displays good processing quality though May, and could have storage potential below 54°F.

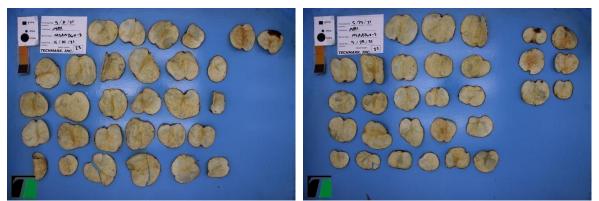


Figure 3. MSAA260-3 chip quality on the last two sample dates, 5/10/21 (left) and 5/24/21 (right)

MSAFB635-15

MSAFB635-15 is a University of Maine selection crossed at Michigan State University. It was first evaluated by the Potato Outreach Program in 2020. This variety had a slightly higher than average US#1 yield, 283 cwt/A. It had an above average US#1 yield of 302 cwt/A and very high total yield of 409 cwt/A, the highest total yield in the 2020 Box Bin trial. This variety produced 25% B-sized tubers, suggesting a very high yield potential. The specific gravity of 1.091 was also above the trial average. Off the farm chip quality was marginal, but the stem end defect score was average. Both the vine vigor and vine maturity were average for the trial. Between the two harvest samples, increasing glucose and decreasing sucrose indicated chemical maturity at harvest. During storage, sucrose concentrations followed a U-shaped trend, remaining high through December, decreasing though March, and then rising again through the end of storage in early June. Glucose concentrations rose between April and June, ending with a high of 0.007%. No undesirable color was observed in the 2020-2021 storage season. Total defects were all below ten percent, excluding the last two samples where defects rose to 20%. The last acceptable chip sample was taken on 5/10/21. This variety will be further evaluated in the Box Bin and other on-farm trials in 2021 due to long term storage potential though May.

Figure 4. MSAFB635-15 chip quality on last acceptable sample date, 5/10/21 (left) and last storage sample, 6/7/21 (right).

Snowden

This variety was included as a commercial standard for the 2020-2021 Box Bin trial. It had the lowest yield in the trial, not typical for Snowden, which generally has an average to above average yield potential. This was likely due to the smaller than average tubers size, with only 59% A-sized tubers and 40% B-sized tubers produced in 2020. Specific gravity was below average at 1.077. Snowden had an average vine size and a very early maturity. It was chemically mature at harvest, with an increasing glucose concentration and decreasing sucrose rating. In storage, sucrose concentrations initially rose through December, then decreased, and finally rose in the last two samples in April. Glucose also rose sharply in the last two samples, ending at 0.006%. Undesirable color was observed at the first and last samples, both under three percent. Internal color was present in the last two samples. Total defects were highest in the first storage sample, early January, early March, and the final sample in late April. Bruising was noted in most samples, and pest pressure was present toward the end of the storage season. Snowden continues to be grown and stored in Michigan, and remains the standard for the Box Bin trials.

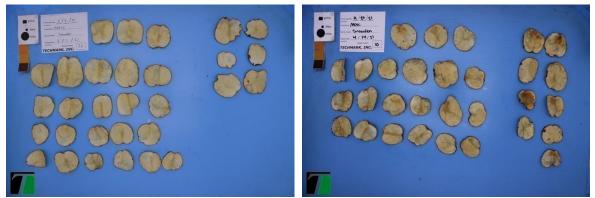


Figure 6. Snowden chip quality on last acceptable sample date, 3/1/21 (left) and last storage sample 4/19/21 (right).

II. 2020 - 2021 Bulk Bin (500 cwt. Bin) Report

(Chris Long, Trina VanAtta, Damen Kurzer, and Brian Sackett)

Overview and Objectives

The goals of the MPIC Storage and Handling Committee for the 2020-2021 bulk bin storage season were: 1. To further refine optimal storage profiles for Mackinaw, specifically to understand temperature effect on weight loss and pressure bruise development, 2. To further refine optimal storage profiles for Petoskey, specifically to determine the extent of stem end defects and chip defects when cooled, and 3. To study the effects of two different storage temperatures on MSZ219-13. Bins 8 and 9 were used for a pathology study.

Procedure

Each bin was filled under contract with potato producers in the state of Michigan. The MPIC paid field contract price for the potatoes to be delivered to the demonstration storage. Pressure bruise samples were collected for each bulk bin and designated bulk bins were filled. The varieties and their storage management strategies were established by the MPIC Storage and Handling Committee. For each bulk bin filled, a corresponding box bin containing 10 cwt. was filled and placed into Bin 7. Bin 7 was held at 54°F, which in most cases is warmer than the corresponding bulk bin of the same variety. This allowed the committee to see if the warmer storage temperature in the box bin would reduce storage life and provided information as to how the bulk bin tubers might physiologically age. Bulk bins 1 though 4 were gassed with CIPC on November 11th and February 19th. DMN was applied to bins 3 and 4 on October 19th. Bins 5 and 6 were not treated.

Bulk bin assignments are below:
1 and 2: Mackinaw (Sackett Potatoes)
3 and 4: Petoskey (Walther Farms Cass City)
5 and 6: MSZ219-13 (Thorlund Brothers)
7: Box Bins
8 and 9: Mackinaw Pathology Study (Sackett Potatoes)

We began sugar monitoring the day tubers were loaded into storage and sampled tubers on a two-week schedule thereafter. Forty tubers were removed from the sample door in each bin every two weeks and sent to Techmark, Inc. for sucrose, glucose, chip color and defect evaluation. The sample door is located in the center back side of each storage bin and allows us to take samples from the pile three feet above the bottom of the pile. Pressure bruise evaluation began by collecting nine, 20 to 25 lb. tuber samples as each bin was being filled. Three samples were placed at each of three different levels within the bulk bin pile at 3, 8, and 14 feet from the storage floor.

We evaluated the pressure bruise samples 3 to 5 days after the bin was unloaded. We randomly selected a set of 25 tubers from each bag and visually inspected for pressure bruising. By removing the tuber skin with a knife, we evaluated the discoloration for each flat spot. A visual rating established presence or absence of flesh color (blackening of flesh). We calculated percent weight loss in each tuber sample as it was removed from the storage.

Mackinaw Storage Trial (Bin 1 and 2)

Mackinaw, a promising variety from Michigan State University, has commercialization potential in Michigan due to excellent long-term chip quality with tolerance to stem-end defects, resistance PVY and Late Blight, tolerance to common scab and Fusarium, resistance to Rhizoctonia, and a higher specific gravity. The purpose of this bulk bin experiment was to evaluate glucose and sucrose reaction during pile cooling to 48°F and 46°F in Bins 1 and 2, respectively. The initial pulp temperature was 46.8°F in Bin 1 and 49.5 °F in Bin 2 during bin loading, and temperature in both bins was increased to suberization temperature. The bins were then cooled by direct cooling to 50°F. The bins were further cooled to 48°F at a rate of either 0.4°F per day or 0.6°F per day. After reaching 48°F, later cooling occurred at a rate of 0.2°F per day for Bin 1 until the temperature reached 46°F, while Bin 2 was held at 48°F. This strategy and cooling rate is used in all bulk bins, which were cooled from field temperature to suberization temperature, to 50°F, to the target storage temperature. We filled Bin 1 with Mackinaw on October 14th. The seed was planted in Mecosta, MI on May 12th and vine killed on September 14th (125 DAP, GDD₄₀ 3420). This field was harvested on October 13th, 154 days after planting. At loading, tubers in Bin 1 were 32% bruise free and tubers in Bin 2 were 36% bruise free. The pulp temperature for tubers at the time of bin loading was 46.8°F in Bin 1 and 49.5°F in Bin 2. Both bins were gassed with CIPC on November 12th and February 19th. They were unloaded on June 23rd and shipped to Utz Quality Foods, Hanover, PA, where they were processed on June 24th.

Results

Bulk Bin 1, Mackinaw (GDD₄₀ 3240, 48°F)

Mackinaw was grown at Sackett Potatoes (Figures 7A and 7B). The Potato Outreach Program conducted a test dig prior to vine kill, in which ten feet of potatoes were harvested and graded. A US#1 yield of 325 cwt/A and total yield of 398 cwt/A were calculated from this test dig. Specific gravity was 1.088. There were 14.5 tubers per plant, 4.8 tubers per stem, and an average tuber weight of 3.6 oz. Ten percent vascular discoloration was observed. There were 82% A-sized tubers, 18 % B-sized tubers, and no oversize tubers or pickouts.

Pre-harvest samples were taken on 8/17/20 and 8/31/20. Increasing glucose concentrations and decreasing sucrose concentrations indicated possible chemical immaturity. At the second pre-harvest sample, the average tuber size was 3.2 oz. Chip quality out of the field was evaluated on 10/14/20 with two percent total defects observed. Defects are reported by Techmark, Inc, and are determined using slices cut from stem to bud end. On this date, sucrose and glucose concentrations were 1.374 (X10) and 0.023%, respectively. The SFA chip color was 1.0. The target temperature of 48°F was reached in mid-December.

Mackinaw had an elevated sucrose concentration for most of storage, with concentrations above 1.000 (X10) until late February. After this sample, sucrose was generally below 1.000 (X10), excluding the final sample on 6/23/21 where it was 1.060 (X10). Glucose

concentrations were generally more stable, and trended lower towards the end of storage, remaining between 0.001% and 0.002% in all samples after March. Undesirable color was observed in two sampled in January and March, both below 8%. Internal color was very good, with only two samples displaying this defect. The first incidence in late November was 3.3%, and the second was in late May at 2.8%. Total defects were variable during storage. Initial chip quality was excellent with two percent defects, but this quickly rose to over 20% in all samples, reaching a high of 62.6% defects in February. After this sample, defects decreased with each subsequent sample, ending with 10.7% defects in June at bin unloading. Figure 8 displays chip images of the first chip sample, sample with the highest incidence of total defects, and the final chip sample in June.

On June 23^{rd,} the Bin was unloaded (Figure 9) and the potatoes were sent to Utz Quality Foods, Hanover PA, on the same day for processing on June 24th. Some sprouting was observed at bin unloading. Sackett Potatoes also evaluated the potatoes on June 23rd and observed a specific gravity of 1.092 and Frito Lay Solids of 18.97. A sample was chipped in the Sackett Potatoes lab and photographed by the Potato Outreach Program (Figure 10). When evaluated at Utz Quality Foods, the processor identified six percent total chip defects and a high specific gravity of 1.093 (Figure 11). Four percent of the defects were internal, and two percent were internal. Utz photographed the raw tubers and noted the presence of stem end defect (Figure 12).

At bin unloading, the average weight loss of tubers was 5.83%. Seven percent of the tubers had bruising with color, while 64% had bruising with no color and 29% were bruise free (Table 6). Mackinaw continues to be a promising variety with commercialization potential in Michigan. It will be further evaluated in the 2021 to 2022 storage season.

Figures 7A and 7B. The Sackett Mackinaw potatoes used in Bulk Bin 1 at Sackett Potatoes on 7/7/20 (left) and 7/26/20 (right). The Mackinaw plants are on the right side of both images.

Figure 8. Bulk Bin 1 chips on the first sample date (10/14/20), sample with highest defect incidence (2/15/21), and final sample date (6/23/21).

Figure 9. Mackinaw potataoes in Bin 1 during unloading on 6/23/21. Some sprouting was observed.

Figure 10. Mackinaw from Bin 1 chipped by Sackett Potatoes, 6/23/21.

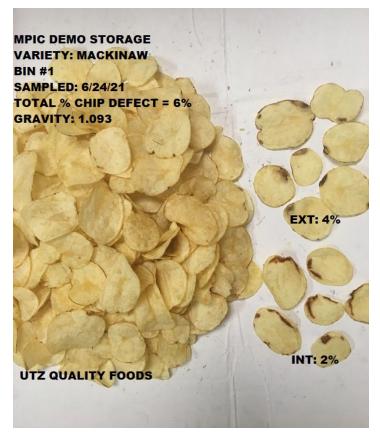


Figure 11. Mackinaw from Bin 1 at Utz Quality Foods, 6/10/20.

Figures 12A and 12B. Mackinaw tubers photographed at Utz (left), cut tubers photographed at Utz displaying stem end defect (right).

Bulk Bin 2, Mackinaw (GDD₄₀ 3240, 46°F)

Chip quality out of the field was very good with no defects reported on the first sample date, October 14th. Defects are reported by Techmark, Inc, and are determined using slices cut from stem to bud end. On this date, sucrose and glucose concentrations were 1.413 percent (X10) and 0.002 percent respectively with a pulp temperature of 49.5°F.

Sucrose levels were elevated as in Bin 1. Concentrations remained elevated between the beginning of storage and February, after which they declined through May. The last three storage samples between late May and June displayed rising sucrose. Glucose concentrations were less variable than in Bin 1, with all concentrations between 0.001% and 0.004%. The target temperature of 46°F was reached in early January, and the bin was maintained until temperature increased beginning in May, ending at 53.6°F in late June.

Like Bin 1, Bin 2 had good chip quality for most of storage. There were no instances of undesirable color during storage, and three observations of internal color, all below six percent. Two of these were observed toward the end of storage. Total defects were variable, generally rising through February, when they reached a high of 59.2% total defects on 2/1/21. After this sample total defects generally decreased, ending with 26% at bin unloading. Techmark observed bruising in most samples, as well as slight stem end color from the beginning of storage until March. This suggests that the chip quality may improve over the storage season with the tubers displaying less stem end defect in late storage. In all but one sample, chips in Bin 2 had a higher percentage of total defects than those in Bin 1. This suggests that the slightly warmer storage temperature of 48°F may be preferable for long term storage.

Bin 2 was unloaded on June 23rd and was also processed at Utz on June 24th (Figure 14). As in Bin 1, a sample was chipped at Sackett Potatoes (Figure 15). Sackett Potatoes observed a specific gravity of 1.086 and Frito-Lay solids of 17.76. Utz Quality Foods found a specific gravity of 1.092, lower than that of Bin 1, and three percent total chip defects, slightly lower than Bin 1 (Figure 16A). Utz also photographed the raw tubers prior to chipping (Figure 16B).

At bin unloading, the average tuber weight loss in Bin 2 was 4.97%, very slightly lower than in Bin 1. Five percent of tubers were bruised with color, while 43% were bruised with no color and 52% had no bruising (Table 6).

Figure 13. Mackinaw chips from the first (10/14/20) and last (6/23/21) sample dates.

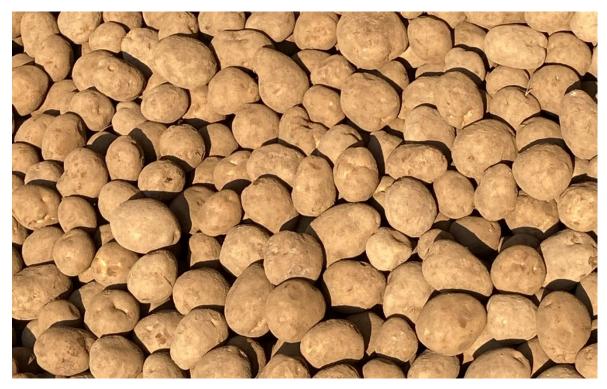


Figure 14. Mackinaw tubers from Bin 2 unloading on 6/23/21.

Figure 15. Mackinaw from Bin 2 chipped by Sackett Potatoes, 6/23/21.

Figures 16A and 16B. Mackinaw from Bin 2 chipped at Utz Quality Foods on 6/24/21, raw tubers from Bin 2 on 6/24/21.

Table 6. 2020-2021 PRESSURE BRUISE DATA Bulk Bin #1 and #2 Mackinaw (Mecosta, MI)										
	Average	Avera	ige Numbe	er of Ex	ternal		Average % o	f Total		
	Weight	Pressure Bruises Per Tuber ² Tube						r Number		
Location ¹	Loss (%)	0	1	2	3+	Without Bruise	Bruised (No Color)	Bruised with Color ³		
14' Bin 1	4.88	8	11	5	1	32	65	3		
8' Bin 1	5.79	9	8	6	2	35	63	2		
3' Bin 1	6.81	5	10	6	4	20	64	16		
OVERALL AVERAGES	5.83					29	64	7		
14' Bin 2	4.40	15	8	2	0	60	40	0		
8' Bin 2	4.85	13	9	3	0	53	40	7		
3' Bin 2	5.68	11	10	4	0	43	49	8		
OVERALL AVERAGES	4.97					52	43	5		
 ¹ Feet above the bin floor. ² A Sample of 25 tubers randomly selected. Each tuber was first evaluated for the number of visual pressure bruises 0, 1, 2, 3+. ³ A cut slice was removed just below the skin of each bruised area. If any flesh was darkened, it was scored as a tuber "with color". 										
Loaded $\frac{10/4/2020}{\text{(both)}}$			Pulp Terr	np. (at Fil	ling)	46.8°F (1) 49.5°F (2)				
Unloaded	6/23/2021 (1	poth)	Target St	orage Te	mp.	48°F (1) 46°F (2)	End Temp.	51.8°F (1) 53.6°F (2)		

Petoskey Storage Trial (Bins 3 and 4)

This Michigan State University variety has continued commercialization potential in Michigan due to an above average specific gravity, common scab resistance, May storability from 46°F, and a vine maturity similar to Snowden. The yield potential continues to be lower than that of Snowden, and Petoskey displays poor chip quality in early storage with a higher proportion of chip defects when processed out of the field.

These two bulk bins were filled with potatoes grown by Walther Farms in Cass City, MI (Figure 17). The Potato Outreach Program conducted a ten-foot test dig prior to vine kill and calculated 465 cwt/A US#1 yield and 496 cwt/A total yield. The specific gravity was 1.087 and no internal defects were observed. There were nine tuber per plant and 2.3 tuber

per stem. The average tuber weight was five ounces. The tuber size profile was 92% Asized tubers, five percent B-sized tubers, two percent oversize tubers, and one percent pickouts. The potatoes in both bins were planted on April 28th and vines were killed on September 2nd (127 DAP, GDD₄₀ 3429). Harvest occurred on October 7th, 162 days after planting. At harvest the pulp temperature was 55.2°F for both bins. The tubers were in good condition at bin loading, with 68% bruise free tubers in Bin 3 and 80% bruise free tubers in Bin 4. Only one pre-harvest sample was taken on 8/14/20. The specific gravity was 1.087, the glucose concentration was 0.002%, and the sucrose rating was 0.482 (X10). The bins were loaded on October 7th and treated with CIPC on November 12th and February 19th. These bins were designed to study chip quality and potato storability under two different storage protocols.

Figure 17. The Petoskey field (right) at Walther Farms Cass City on 7/1/20.

Results

Bulk Bin 3, Petoskey (GDD₄₀ 3429, 46°F)

The initial target temperature for this bin was 52°F, which was reached in mid-November by cooling at a rate of 0.2°F per day, and further cooling to 46°F at the same rate occurred to increase the longevity of storage as total defects displayed a decreasing trend, suggesting improved chip quality with continued storage. This target temperature was maintained until the bin was unloaded on 5/18/21 with a pulp temperature of 46.0°F. Petoskey displayed a U-shaped trend in sucrose concentrations with decreasing sucrose concentrations from October to late February. The lowest sucrose rating was observed on 2/15/21, 0.335 (X10). After this sample, sucrose generally increased, with the final sample in May at 0.854 (X10). Glucose concentrations also rose toward the end of storage, rising from readings between 0.002% and 0.003% for most of storage to 0.008% in May. There were four incidences of undesirable color, all below six percent. Internal color was apparent in five samples, three at the beginning of storage, and the remaining two present in the last two storage samples. Total defects were variable, with higher defect incidence observed between the beginning of storage and February. Beginning in March, most total defect percentages were below 12%, excluding the final sample that had 19% total defects.

Petoskey displayed evidence of reconditioning in storage. See Figure 18 for images of marginal chip quality in October and February, improving chip quality in April, and the final chip sample with decreasing chip quality in May. Techmark observed slight to moderate stem end defect in chip samples until February and bruising and dark chips in samples through the end of storage.

Bin 3 was unloaded on May 17th (Figure 19). At unloading, the average tuber weight loss was 5.30%. Twenty eight percent of tubers had no bruising, 57% had bruising with no color, and 16% were bruised with color (Table 7). As in Bin 1 and 2, Sackett Potatoes chipped a sample of tubers (Figure 20). Sackett Potatoes noted a specific gravity of 1.085

and Frito-Lay solids at 17.58. Utz noted a specific gravity of 1.081. Chip quality was good, with three percent external defects and five percent internal defects for a total of eight percent defects. Figure 21 shows cut tubers prior to chipping and Figure 22 shows finished chips made from Petoskey tubers.

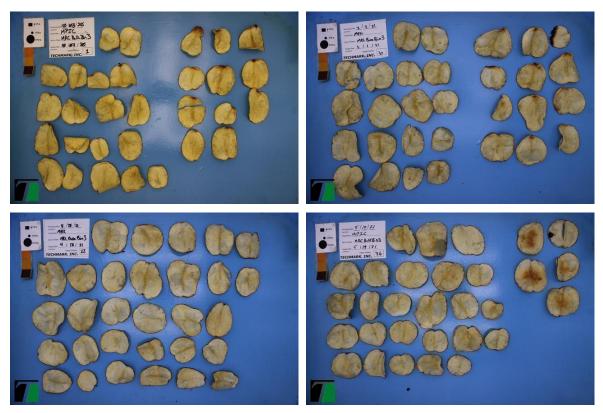


Figure 18. Petoskey chip images on 10/7/20 (top left), 2/1/21 (top right), 4/28/21 (bottom left), and 5/18/21 (bottom right). Chip quality was generally poor from the beginning of storage until February, improved until late April, and then declined slightly at bin unloading.

Figure 19. Petoskey from Bin 3 unloaded on 5/17/21.

Figure 20. Petoskey from Bin 3 chipped by Sackett Potatoes on 5/17/21

Figure 21. Petoskey tubers prior to chipping at Utz Quality Foods on 5/20/21.

Figure 22. Petoskey tubers after chipping at Utz Quality Foods on 5/20/21.

Bulk Bin 4, Petoskey (GDD₄₀ 3429, 48°F)

This bulk bin was initially cooled to 52°F by mid-November, after which it was further cooled to the target temperature of 48°F by early December. This temperature was maintained until bin unloading on May 18th. As in Bin 3, sucrose concentrations followed a U-shaped trend with the highest concentrations shortly after bin loading and just before unloading. Concentrations were lowest between March and April. Glucose concentrations remained more stable, between 0.001% and 0.004% for most of the storage season, increasing to 0.003% in the last two samples. There were two samples with undesirable color, both in the middle of the storage season and both below three percent. Internal color was generally low. The three samples with internal color were at 13% or lower. Total defects were consistently high from bin loading to late February, after which they generally decreased. The sample taken on 11/16/20 had 60.1% total defects, the highest observed in Bin 4. The sample taken on 4/5/21 had the lowest total defects, 3.8%, and the final sample had 6.2% defects. See Figure 23 for images of chips at bin loading, November 16th, April 5th, and bin unloading. Slight to moderate stem end defect was present in most chip samples evaluated by Techmark from the beginning of storage until March. Bruising was noted in most of the remaining samples.

Bin 4 was unloaded on May 17th with a pulp temperature of 47.8°F (Figure 24). A sample was chipped at Sackett Potatoes (Figure 25). Sackett Potatoes calculated a specific gravity of 1.084 and Frito lay solids of 17.40. Utz Quality Foods received and processed the tubers on May 20th. The processor noted a specific gravity of 1.085, three percent internal defects, two percent external defects, and five percent total defects (Figure 26). Petoskey demonstrating reconditioning, or "cleaning up" in storage, where chip quality improves after initially marginal out of the field and early storage performance. The stem end defect observed in both bins was less severe from March to May, suggesting that the defect was not caused by disease and was managed in storage. This variety continues to display mid-season storability, with processing potential between March and May. It will be further evaluated in on farm trials by the Potato Outreach Program and in a bulk bin in 2021.

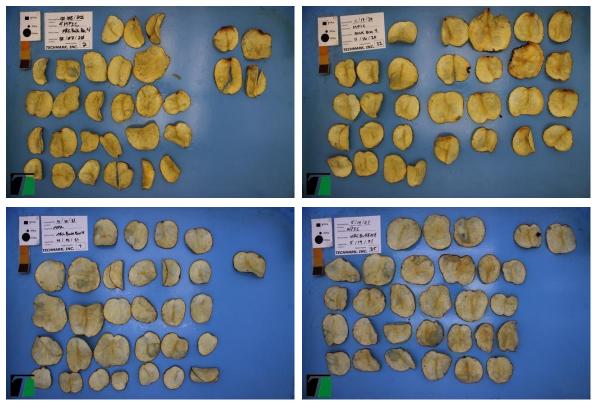


Figure 23. Petoskey from Bin 4 chip samples taken on 10/7/20 (top left), 11/16/20 (top right), 4/5/21 (bottom left), and 5/17/21 (bottom right).

Figure 24. Petoskey from Bin 4 during unloading on 5/17/21.

Figure 25. Petoskey chipped by Sackett Potatoes on 5/17/21.

Figure 26. Chipped (left) and raw (right) tubers at Utz Quality Foods on 5/20/21.

Table 7. 2020-2021 PRESSURE BRUISE DATA										
	Bulk	Bin #3	and #	4 Peto	skey	(Cass Ci	ty, MI)			
	Average Weight		ge Numbe are Bruise				Average % of Total Tuber Number			
Location ¹	Weight Loss (%)	0	1	2	3+	Without Bruise	Bruised (No Color)	Bruised with Color ³		
14' Bin 3	5.79	11	8	4	2	44	49	7		
8' Bin 3	4.81	7	11	5	3	27	61	12		
3' Bin 3	5.30	3	6	10	6	12	60	28		
OVERALL AVERAGES	5.30					28	57	16		
14' Bin 4	5.37	3	12	9	1	13	80	7		
8' Bin 4	6.17	3	10	8	4	11	84	5		
3' Bin 4	7.26	0	4	9	12	0	53	47		
OVERALL AVERAGES	6.26					8	72	20		
 ¹ Feet above the bin floor. ² A Sample of 25 tubers randomly selected. Each tuber was first evaluated for the number of visual pressure bruises 0, 1, 2, 3+. ³ A cut slice was removed just below the skin of each bruised area. If any flesh was darkened, it was scored as a tuber "with color". 										
Loaded Unloaded	10/7/20(both) 5/17/21 (both)	Pulp Temp. (at Filling) Target Storage Temp.				55.2°F (both) 46.0°F (3) 48.0°F (4)	End Temp.	46.0°F (3) 47.8°F (4)		

48.0°F (4)

47.8°F (4)

MSZ219-13 (Bins 5 and 6)

This Michigan State University selection has been evaluated by the Potato Outreach Program since 2017. It has an average yield, but a high percentage of A-sized and oversized tubers. It is resistant to common scab with a below average specific gravity and above average incidence of hollow heart. This variety was planted on May 7th at Thorlund Brothers, Greenville, MI. Vine kill occurred on September 14th (130 DAP, 3447 GDD₄₀). A ten foot test dig prior to vine kill calculated a US#1 yield of 389 cwt/A and a total yield of 421 cwt/A. The specific gravity was 1.076, and ten percent brown center was observed. There were 7.2 tubers per plant, 3.6 tubers per stem, and the average tuber weight was 5.1 oz. The potatoes were harvested on October 12th, 158 days after planting. At bin loading

the pulp temperature was 48.7°F in Bin 5 and 51.5°F in Bin 6. Tubers were 68% and 48% bruise free, respectively.

Two pre-harvest samples were taken for this variety on August 31st and September 14th. The increasing glucose and sucrose indicate potential chemical immaturity at harvest. Both bins were gassed with CIPC on November 12th. The initial plan for the bins was to cool them to 48°F and 50°F, respectively. However, the chip quality and agronomic traits caused the research committee to discontinue evaluation. The average yield and tendency towards larger tubers make this variety less likely to succeed in commercial production in Michigan. Both bins were held at 54°F to maintain respiration until the potatoes reached an acceptable processing quality.

Figure 27. MSZ219-13 (right) grown at Thorlund Brothers for Bulk Bins 5 and 6 on 7/7/20, 60 days after planting

Results

Bulk Bin 5, MSZ219-13 (GDD₄₀ 3447, 48°F)

The temperature in Bulk Bin 5 was maintained near 54°F for the duration of storage. The sucrose concentration generally decreased with each sample, beginning at 0.669 (X10) and ending at 0.307 (X10) at bin unloading on November 30th. Glucose concentrations were highest at the October 19th sample, 0.006%. All other samples were either 0.002% or 0.003%. There was no undesirable color observed in 2020. Moderate internal color was present in three out of the five samples, with the first and last sample displaying no internal color. Total defects were above 19% in all samples, with the highest percent defect, 72.3%, in the November 2nd sample. Figure 28 shows the first and last chip samples.

Bin 5 was unloaded on November 30th along with Bin 6, and tubers from both bins were combined in a shipment to Better Made Snack Foods, Detroit MI (Figure 29). The potatoes were processed on December 1st. The specific gravity was 1.078 and the Agtron score was 63. There were 3.1% total defects observed, including 0.3% greening, 1.9% internal defects, and 0.9% external defects. Better Made sent a sample of unsorted chips to the Potato Outreach Program, and staff visually sorted the chips based on defect type (Figure 30). They identified 94% acceptable chips, four percent internal defects, two percent external defects, and slight greening defects that accounted for less than one percent of the sample weight. The higher incidence of defects identified by the Potato Outreach Program does not indicate reduced chip quality, just that some defects were identified by the Potato Outreach Program staff that were still acceptable to the processor. Sackett Potatoes chipped a sample from Bin 5 on November 30th and found a specific gravity of 1.073 and Frito Lay solids of 15.69. The Potato Outreach Program photographed a sample of the chips (Figure 31).

Average tuber weight loss was 2.25% at bin unloading, likely due to the short duration of storage. 76% of tubers were bruise free, 23% were bruised with no color, and one percent were bruised with color (Table 8).



Figure 28. Bulk bin 5 first chip sample on 10/13/20, and last chip sample on 11/30/20.



Figure 29. Tubers from Bin 5 at unloading on 11/30/20.

Figure 30. Chips sorted by the Potato Outreach Program received from Better Made. The left side is acceptable chips, the top right is internal defects, middle right is external defects, and bottom right is greening defects.

Figure 31. Chips processed from Bin 5 at Sackett Potatoes on 11/30/20.

Bulk Bin 6, MSZ219-13 (GDD₄₀ 3447, 50°F)

This bin displayed performed like Bin 5 in terms of total chip defects, internal color, and undesirable color. Sucrose followed a generally decreasing trend at each sample but was slightly lower than the sucrose concentration in Bin 5. Glucose concentration was consistent with that of Bin 5, ending at 0.002% at bin unloading on November 30th. There was one incidence of undesirable color on November 16th, 8.6%. Internal color was always above nine percent, with the highest incidence in the first sample. Total defects were also elevated, with each sample containing over 33% defects.

This bin was also unloaded on November 30th. As the tubers from Bin 5 and Bin 6 were mixed for processing, no separate data exists for Bin 6. See Bin 5 for results from Better Made Snack Foods. Sackett Potatoes processed a sample from Bin 6 on November 30th and found a specific gravity of 1.077 and Frito lay Solids of 16.2 (Figure 33). Average weight loss in Bin 6 was 2.22%. 83% of tubers were bruise free, 16% were bruised with no color, and one percent was bruised with color (Table 8).

Figure 32. Bulk Bin 6 first chip sample on 10/13/20, and last chip sample on 11/30/20.

Figure 33. Chips processed from Bin 6 at Sackett Potatoes on 11/30/20.

Table 8. 2020-2021 PRESSURE BRUISE DATA Bulk Bin #5 and #6 MSZ219-13(Greenville, MI)										
	Average	Averag Pressu	Total per							
Location ¹	Weight Loss (%)	0	1	2	3+	Without Bruise	Bruised (No Color)	Bruised with Color ³		
14' Bin 5	2.03	23	2	0	0	91	9	0		
8' Bin 5	1.92	17	8	0	0	67	32	1		
3' Bin 5	2.80	17	8	0	0	69	29	1		
OVERALL AVERAGES	2.25					76	23	1		
14' Bin 6	2.07	22	3	0	0	89	9	1		
8' Bin 6	2.44	19	6	0	0	75	24	1		
3' Bin 6	2.15	22	3	0	0	87	13	0		
OVERALL AVERAGES	2.22					83	16	1		

¹ Feet above the bin floor.
 ² A Sample of 25 tubers randomly selected. Each tuber was first evaluated for the number of visual pressure bruises 0, 1, 2, 3+.

³ A cut slice was removed just below the skin of each bruised area. If any flesh was darkened, it was scored as a tuber "with color".

Loaded	10/13/20(both)	Pulp Temp. (at Filling)	48.7°F (5) 51.5°F (6)		
Unloaded	11/30/20 (both)	Target Storage Temp.	54.0°F (both)	End Temp.	52.8°F (both)

Mackinaw Storage Pathology Trial (Bins 8 and 9)

Dr. Jaime Willbur used Bins 8 and 9 to study Mackinaw performance after a stressful growing season in 2020 and evaluated the disease susceptibility to various storage pathogens. Commercial applications of SaniDate were also evaluated as method of reducing storage disease incidence. Agronomic data for these bins is identical to that of Bin 1 and 2. For further information on the pathology results from this study, please see the research report from the Willbur lab. This report deals with storge and chip quality.

Results

Bulk Bin 8, Mackinaw, (GDD₄₀ 3240, 48°F)

Bulk Bin 8 was loaded on October 14th and cooled to the target temperature of 48°F by December, where it remained for the duration of storage (Figure 34). CIPC was applied on November 12th and February 19th. Sucrose concentrations remained elevated during storage as in Bins 1 and 2, ending at 0.888 (X10) on June 14th. Glucose was initially high but stabilized between 0.001% and 0.002% by late February. There was one instance of undesirable color, 4.7%, observed on March 1st. Total defects were initially high, but generally decreased beginning in March. The last sample had 21.7% defects. No pressure bruising was conducted on this bin. See Figure 35 for images of the first and last chip sample.

The bin was unloaded on 6/14/21, and the tubers were shipped to Snyder Lance. A sample of potatoes was also chipped at Sackett Potatoes on 6/14/21 (Figure 36). Sackett Potatoes reported a specific gravity of 1.092 and Frito-Lay score of 18.9. The tubers were processed on 6/16/21 at Snyder Lance (Figure 37).

Figure 34. Loading Bulk Bins 8 and 9 on 10/14/20.

Figure 35. Bulk Bin 8 first chip sample on 10/14/20 and last chip sample on 6/14/21.

Figure 36. Chips processed from Bin 8 at Sackett Potatoes on 6/14/21.

Figure 37. Chips processed at Snyder Lance on 6/16/21.

Bulk Bin #9, Mackinaw, (GDD₄₀ 3248, 48°F)

Bulk Bin 9 was loaded on the same day as Bin 8, 10/14/20 (Figure 34). It had the same target temperature as Bin 8 and reached 48°F by December 2020. It was held at this temperature until June but rose to 56.4°F at bin unloading. As in the other three bins of Mackinaw, sucrose concentrations were initially high, but decreased beginning in late February. Sucrose concentrations at bin unloading were lower than those in Bin 8. Glucose concentrations were initially high, but decreased in March, ending the storage season at 0.002%. There was one incidence of undesirable color on 3/1/20, 6.2%. Total defects were initially high, with 62.6% defects on 11/16/20 (Figure 38). Percent defects fluctuated but remained below 50% for the rest of storage. Techmark observed slight to severe stem end defect from the beginning of storage until April and bruising in most samples. At bin unloading, there were 35.6% defects. As in Bin 8, no tuber weight loss or bruising was calculated.

Sackett Potatoes processed a sample of potatoes and calculated a specific gravity of 1.087 and Frito lay solids of 17.98 (Figure 39). The raw tubers were transported to Great Lakes Potato Chips, Traverse City, Michigan (Figure 40). A random sample of cut tubers showed good internal quality with some stem end defect and bruising (Figure 41). The potatoes were cooked, sorted, and bagged (Figure 42). A sample of unsorted chips was sent to the Potato Outreach Program, where staff sorted the chips by defect type. There were 83% acceptable chips, 14% internal defects, two percent external defects, and one percent greening defects (Figure 43).

Figure 38. Chip samples from Bin 9 taken 10/14/20, 11/16/20, and 6/14/21.

Figure 39. Chips processed from Bin 9 at Sackett Potatoes on 6/14/21.

Figure 40. Raw tubers at Great Lakes Potato Chips on 6/15/21.

Figure 41. A random sample of cut tubers at Great Lakes Potato Chips showed some stem end defect and bruising.

Figure 42. Cooked, unsorted potato chips from Bin 9 at Great Lakes Potato Chips on 6/15/21.

Figure 43. Chips sorted by the Potato Outreach Program identified 83% acceptable chips (left), 14% internal defects (top right), two percent external defects (middle right), and one percent greening defects (bottom right).

2020-2021 MICHIGAN RUSSET POTATO STORAGE REPORT MICHIGAN POTATO INDUSTRY COMMISSION

Chris Long, Coordinator, Trina VanAtta, and Damen Kurzer

Introduction and Acknowledgements

Russet potatoes are primarily grown for fresh market use in Michigan or are stored and later sold as tablestock russets for fresh use. There has been industry and commercial interest in exploring storage potential of several standard russet varieties in Michigan to evaluate fry color and sugar defects of commercial varieties after time in storage. There are many variety trials underway in Michigan that are evaluating russet varieties for yield, solids, disease resistance, and desired tuber size profile with the hope of exhibiting the positive attributes of these lines to growers and processors. The information in this report allows the industry to make informed decisions about the value of adopting russet storage practices in Michigan.

Please see the Michigan Potato Demonstration Storage Annual Report for detailed information on the facilities at the Montcalm Research Center and weather data in during the 2020 growing season.

The Ben Kudwa Building, built in 2008, has three independently ventilated, 600 cwt. bulk bins. The first of these bulk bins, bin 7, was converted to box bin storage that holds 36, 10 cwt. box bins to provide storage profiles on early generation potato varieties. The box bin is an entry point into storage profiling that allows the industry to learn about a varieties' physical and chemical storability. All russet storage took place in the box bin from 2020 to 2021. A storage profile consists of monthly sampling of potatoes to obtain: sucrose and glucose levels, Munsell color score, and sugar end defects. With this information, we can create the storage profile of a variety, providing the industry with a clearer picture of where a line can or cannot be utilized. The Michigan potato industry hopes to use these storage profiles to improve in areas such as long-term storage quality, deliverability of product and, ultimately, sustained market share.

The storage facility, and the work done within it, is directed by the MPIC Storage and Handling Committee and Michigan State University (MSU) faculty. The funding and financial support for this facility, and the research conducted within it, is largely derived from the MPIC. The committee occasionally receives support for a given project from private and/or public interests.

We wish to acknowledge all the support and investment we receive to operate and conduct storage research. First, we express our gratitude for the partnership we enjoy between the MPIC and Michigan State University. Thank you to the MPIC Storage & Handling Committee for their investment of time, guiding the decisions and direction of the facility. Special thanks to Butch Riley (Gun Valley Ag. & Industrial Services, Inc.) for his annual investment in the sprout treatment of the storage facility. We would also like to acknowledge a long list of additional contributors who invested much time to help foster a quality storage program: Todd Forbush (Techmark, Inc) and Mathew Klein (Farm Manager, MSU Montcalm Research Center).

I. 2020-2021 Russet Processing Variety Box Bin Report

(Chris Long, Trina VanAtta, Damen Kurzer, and Brian Sackett)

Introduction

All russet varieties were stored in trays on top of the boxes in Bin 7. The box design allows air to travel in from a header, or plenum wall, through the forklift holes of each box and up through the potatoes within it. The air continues to flow up through the next box until it reaches the top and is drawn off the top of the chamber. The air is then reconditioned and forced back through the header wall plenums and up through the boxes again. Each tray contains tubers from which we sampled for monthly quality evaluations.

Procedure

In 2020, we evaluated and compared nine russet varieties to the check variety Russet Burbank. Once the varieties were chosen, .5 cwt. of the varieties were planted in a single 34-inch wide row. Planting occurred on May 7th at the MSU, Montcalm Research Center, Entrican, MI. We planted the varieties at a 10" in-row seed spacing. All varieties received fertilizer in the rates of: 273 lb. N/A, 98 lb P₂O₅/A and 261 lb K₂O/A. The varieties were vine killed after 116 days and allowed to set skins for 21 days before harvest on September 21st and 22nd 2020; which was 137 days after planting. We did not account for variety maturity in harvest timing due to storage and handling restrictions.

We placed approximately .5 cwt. of each variety in each tray on top of the boxes in bin 7. The average storage temperature for all the box bins (box bin 7) was 54.0°F for the 2020-2021 season. We describe the varieties, their pedigree and scab ratings in Table 1. We also recorded yield, size distribution, chip quality, and specific gravity at harvest in Table 2. We graded the varieties to remove all "B" size tubers and pick-outs, ensuring the tubers began storage in good physical condition.

The storage season began in September, with the first samples collected on September 21st, and ended June 7th, 2021. Bin 7 was gassed with CIPC on October 1st and February 19th. We randomly selected forty tubers from each box every month and sent them to Techmark, Inc. for

sucrose, glucose, and color rating using the Munsell Color Standard "Color Standards for Frozen French Fried Potatoes (Figure 1)."

Please contact Chris Long at Michigan State University in the Department of Plant, Soil and Microbial Sciences for additional information at (517) 355-0277 or <u>longch@msu.edu</u>. Additional data is available on the program website, canr.msu.edu/potatooutreach.

Figure 1. The Munsell Color Scale used to evaluate russet potatoes.

Entry	Pedigree	2020 Scab Rating*	Characteristics
Alverstone Russet	CRE98-200 X Innovator	3.5	Light russet skin, good internal quality, average tuber size profile, highest yield in 2020 russet trial.
AOR11217-3**	A01010-3 X NDA070929B-#	0.5	Very uniform type, heavily netted skin, possible scab tolerance/resistance, earlier vine maturity.
Clearwater Russet (AOA95154-1)	Bannock Russet X A8915204	1.0	Attractive medium russet type, higher specific gravity, smaller tuber size profile.
Dakota Russet (ND8229-3)	Marcy X AH66-4	2.0	Moderate alligator hide, slight hollow heart, very high specific gravity, below average yield.
MN13142-32	University of Minnesota	2.0	Long type with tubular shape, earlier vine maturity and smaller vine type, high specific gravity and above average yield.
Pacific Russet** (VO168-3)	NDA8694-3 X Century Russet	4.0	Attractive russet skin, smaller type, severe scab, very low gravity, average yield potential.
Ranger Russet (A7411-2)	Butte X A6595-3	3.5	Tubular type, very low yield with smaller tuber size profile, good internal quality.
Russet Burbank**	Unknown	3.0	Tubular type, many misshapen tubers, slight brown center, below average yield, mid-season maturity.
Sunset Russet** (TX13590-9RUS)	ND9687-3Ru x ND9852-1Ru	3.5	Bottlenecking and misshapen tubers, very high hollow heart, early vine maturity, above average pickouts.
Umatilla Russet (AO82611-7)	Butte X A77268-4	0.5	Medium russet skin, heavy eyebrows, good internal quality, common scab tolerance, average yield potential.

Table 1. 2020-2021 MPIC Demonstration Russet Box Bin Variety
Descriptions

*Scab rating based on 0-5 scale; 0 = most resistant and 5 = most susceptible. Common scab data and qualitative descriptions provided by Potato Outreach Program (P.O.P.), MSU Potato Breeding and Genetics Program and other potato breeding programs.

** Denotes variety sampled monthly. All other varieties sampled bi-weekly.

Bold font indicates a check variety.

Table 2. 2020 Russet Processing Potato Variety Trial

Montcalm Research Center

Planting: 5/7/20 Vine Kill: 8/31/20 Harvest: 9/21/20 and 9/22/20

GDD₄₀: 3335

											00040.00			COMMON			
		cw	т/А		PERC	ENT OF T	OTAL ¹			F	RAW TUBER	QUALITY ³	(%)	SCAB	VINE	VINE	
LINE		US#1	TOTAL	US#1	Bs	As	ov	PO	SP GR ²	HH	VD	IBS	BC		VIGOR⁵	MATURITY ⁸ 6	COMMENTS
Alverstone Russet		250	387	64	34	62	2	2	1.076	0	0	0	0	3.5	2.5	2.5	light russet skin
MN13142-32		220	360	61	34	61	0	5	1.086	0	0	0	0	2.0	1.5	1.0	long, tubular
Sunset Russet		190	310	61	22	60	1	17	1.072	70	0	0	0	3.5	3.0	1.0	bottlenecking
AOR11217-3		181	298	61	31	59	2	8	1.077	0	0	0	0	0.5	2.5	1.5	very uniform, heavy netted skin, possible scab resistance
Pacific Russet		148	244	61	38	60	1	1	1.047	0	0	0	0	4.0	2.5	1.5	nice russet skin, smaller type
Dakota Russet		145	226	64	31	64	0	5	1.082	10	0	0	0	2.0	1.5	2.5	mod ah
Umatilla Russet		142	287	50	37	50	0	13	1.078	0	0	0	0	0.5	2.0	2.0	heavy eyebrows, med russet
Clearwater Russet		102	249	41	56	41	0	3	1.079	0	0	0	0	1.0	1.0	1.0	nice med russet type
Russet Burbank		97	250	39	52	36	3	9	1.066	0	0	0	10	3.0	3.0	3.0	tubular, misshapen
Ranger Russet		84	247	34	56	34	0	10	1.079	0	0	0	0	3.5	3.0	3.5	tubular
	MEAN	156	286	54	39	53	1	7	1.074	8	0	0	1	2.4	2.3	2.0	

¹SIZE Russets Bs: < 4 oz As: 4 - 10 oz

OV: > 10 oz

PO: Pickouts

⁶VINE MATURITY RATING

Date: 8/31/20 Rating 1-5 1: Early (vines completely dead) 5: Late (vigorous vines, some flowering)

³RAW TUBER QUALITY

²SPECIFIC GRAVITY

Data not replicated

FIELD DATA Planting Date

Vine Kill Date

Harvest Date

Seed Spacing

Days (planting to vine kill)

Days (planting to harvest)

GDD₄₀ (planting to vine kill)

GDD₄₀ MAWN Station

(percent of tubers out of 10) HH: Hollow Heart VD: Vascular Discoloration IBS: Internal Brown Spot BC: Brown Center

5/7/20

116

137

3335 10"

8/31/20

Entrican

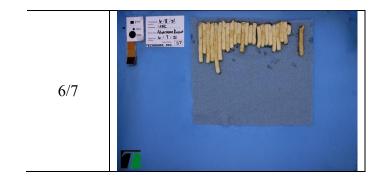
9/21/20 and 9/22/20

⁴COMMON SCAB RATING

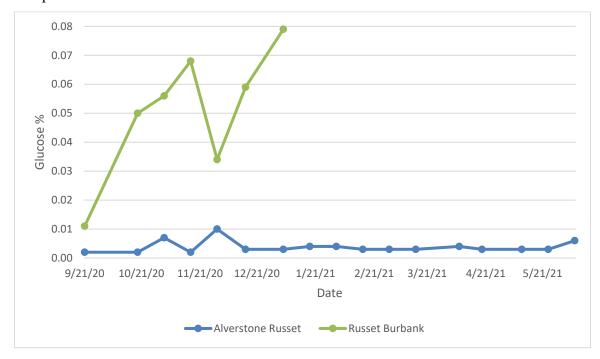
0.0: Complete absence of surface or pitted lesions
1.0: Presence of surface lesions
2.0: Pitted lesions on tubers, though coverage is low
3.0: Pitted lesions common on tubers
4.0: Pitted lesions severe on tubers
5.0: More than 50% of tuber surface area covered in pitted lesions

⁵VINE VIGOR RATING

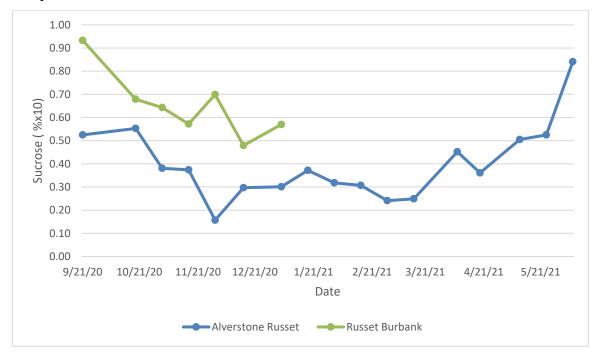
Date: 6/18/20 Rating 1-5 1: Slow emergence 5: Early emergence (vigorous vine, some flowering)

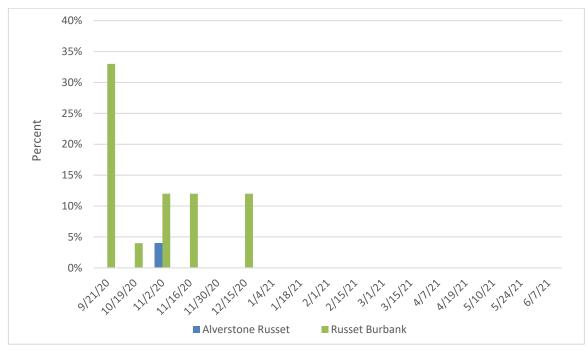

Results: 2020-2021 Russet Processing Box Bin Highlights

For each of the nine varieties and one standard variety, we summarize storage performance, display images of fried potatoes, and display graphs of glucose and sucrose concentrations compared to Russet Burbank. We also summarize the percentage of excellent (Munsell scores 0 and 1), acceptable (Munsell score 2), and unacceptable (Munsell scores 3 and 4) fries at each sample. Finally, we compare the percent of sugar end defects. **Alverstone Russet:** This variety was evaluated twice monthly until June, when the storage season ended. It had a consistently low glucose percentage, with all values at or below 0.01% (Figure 2). Sucrose concentrations were also lower than those of Russet Burbank, and followed a generally U-shaped trend of initially decreasing through November, remaining stable through March, and then increasing through June (Figure 3). Four percent sugar ends were observed in the November 2nd sample (Figure 4). Fry quality was excellent at all samples, with only three samples containing less than ten percent acceptable fries (Figure 5).


Table 3. Alverstone Russet bi-monthly fry quality pictures from Techmark Inc.

9/21	11/16	
10/19	11/30	Reserved for the second
11/2	12/15	


1/4	3/15	
1/18	4/5	Image: Addressed and addresse Addressed addressed addre
2/1	4/19	
2/15	5/10	Addresson Addresson Maddress
3/1	5/24	


Figure 2. Alverstone Russet glucose concentrations for the 2020-2021 storage season compared to Russet Burbank.

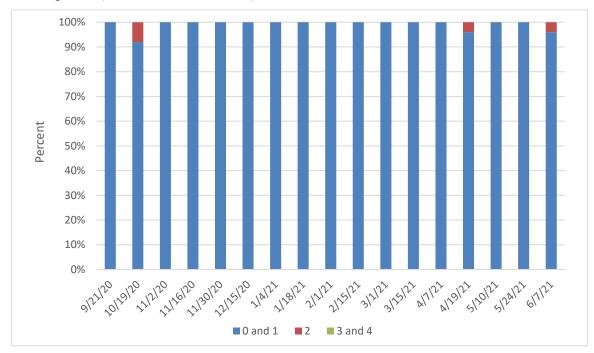
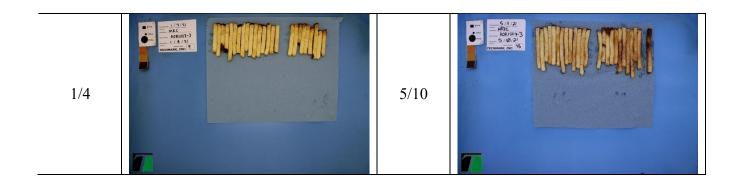
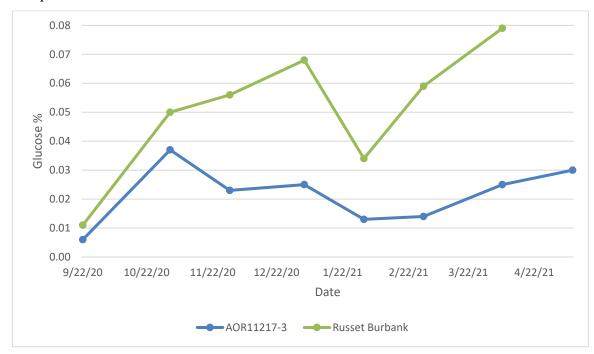
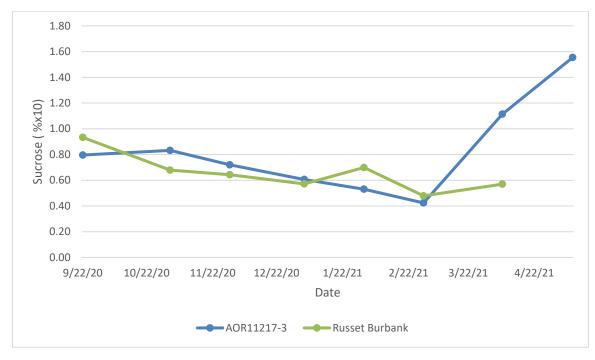

Figure 3. Alverstone Russet sucrose concentrations for the 2020-2021 storage season compared to Russet Burbank.

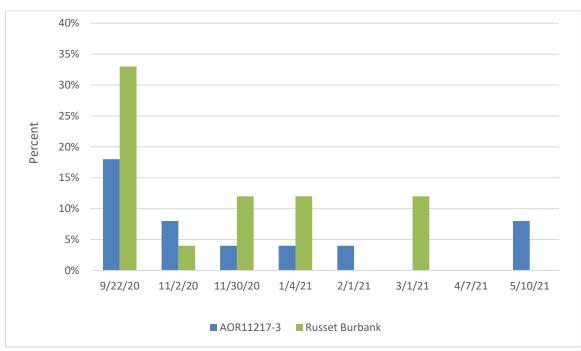
Figure 4. Alverstone Russet percent sugar ends for the 2020-2021 storage season compared to Russet Burbank.


Figure 5. Alverstone Russet percent fry color for the 2020-2021 storage season. Fry quality is: excellent (Munsell scores 0 and 1), acceptable (Munsell score 2), and unacceptable (Munsell scores 3 and 4).


AOR11217-3: This variety was evaluated monthly through May. The storage glucose profile was lower than that of Russet Burbank, but the sucrose concentrations were consistent with those of the check until they rose steeply in April (Figures 6 and 7). Sugar ends were observed in six of the eight samples at 18% or lower (Figure 8). At least half of the fries were rated with excellent color at each sample, but both April samples contained at least four percent unacceptable fries (Figure 9).


Table 4. AOR11217-3 monthly fry quality pictures from Techmark Inc.

9/21	2/1	
11/2	3/1	
11/30	4/5	Image: State of the state


Figure 6. AOR11217-3 glucose concentrations for the 2020-2021 storage season compared to Russet Burbank.

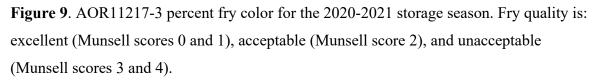
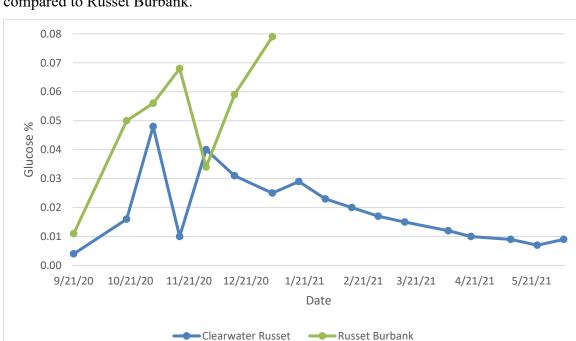


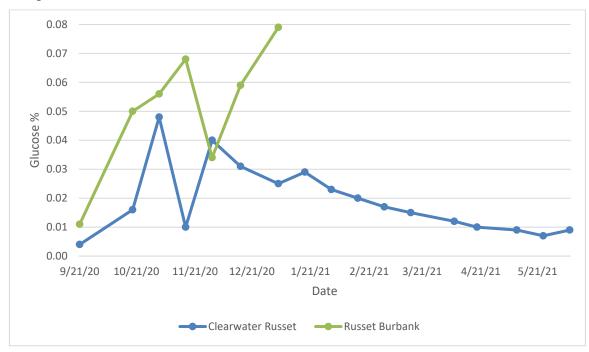
Figure 7. AOR11217-3 sucrose concentrations for the 2020-2021 storage season compared to Russet Burbank.

Figure 8. AOR11217-3 percent sugar ends for the 2020-2021 storage season compared to Russet Burbank.



Clearwater Russet: This variety was evaluated bi-monthly through the end of storage. The storage glucose initially fluctuated through November, but then followed a decreasing trend through June, ending at 0.009% glucose (Figure 10). The sucrose profile was consistent with that of Russet Burbank, decreasing though January and then fluctuating until the end of storage (Figure 11). Sugar ends were observed in seven samples, with the first three samples containing at least 10% sugar ends (Figure 12). Fry quality was variable for the first four samples, but improved during storage with the last two samples containing only excellent fries (Figure 13).

Table 5. Clearwater Russet bi-monthly fry quality pictures from Techmark Inc.


9/21		11/30	
10/19		12/15	
11/2	HUNDER CONTRACTOR	1/18	

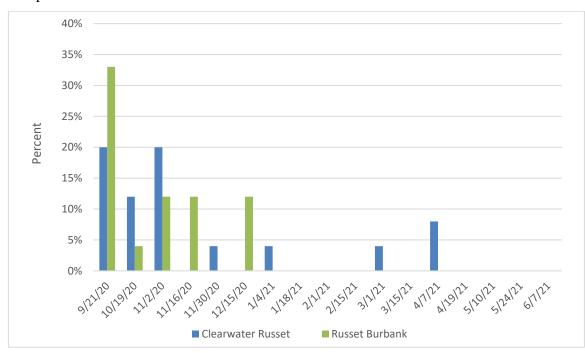

11/16	2/1	
2/15	4/19	
3/1	5/10	
3/15	5/24	
4/5	6/7	A CORRECTION OF THE SECONDARY OF THE SEC

Figure 10: Clearwater Russet glucose concentrations for the 2020-2021 storage season compared to Russet Burbank.


Figure 11: Clearwater Russet sucrose concentrations for the 2020-2021 storage season compared to Russet Burbank.

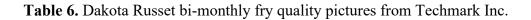
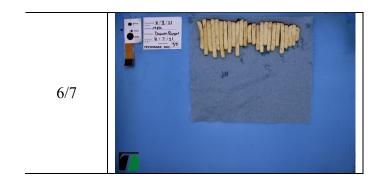
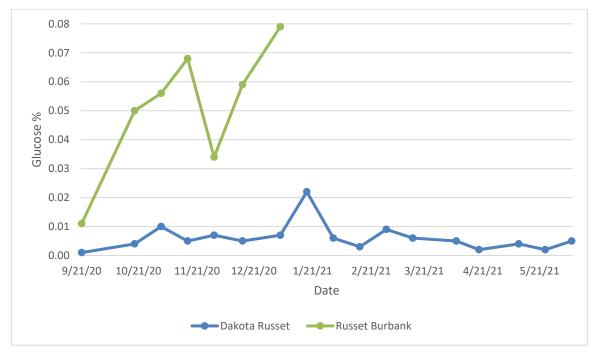


Figure 12: Clearwater Russet sugar end percentages for the 2020-2021 storage season compared to Russet Burbank.

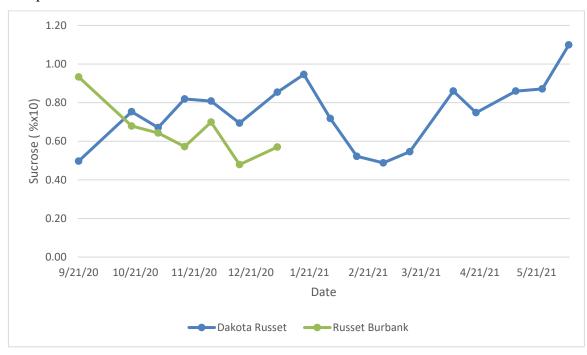
Figure 13: Clearwater Russet percent fry color for the 2020-2021 storage season. Fry quality is: excellent (Munsell scores 0 and 1), acceptable (Munsell score 2), and unacceptable (Munsell scores 3 and 4).



Dakota Russet: This variety was evaluated bi-monthly until June. It had a storage glucose profile like Alverstone Russet, in that is remained low and relatively stable during storage (Figure 14). Sucrose concentrations were more variable, with the lowest concentrations in February and March that then rose though the end of storage (Figure 15). Sugar ends were minimal, with a sample in October and January each displaying less than 10% sugar ends (Figure 16). Fry quality was excellent each month, with all samples containing over 80% excellent fries. Five samples had ten percent or less unacceptable fries (Figure 17).



9/21	Image: A log in the state of the state	11/16	
10/19		11/30	
11/2		12/15	Remark III


1/4	3/15	
1/18	4/5	
2/1	4/19	
2/15	5/10	
3/1	5/24	

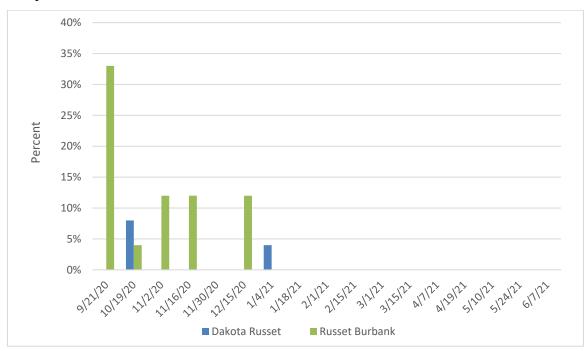
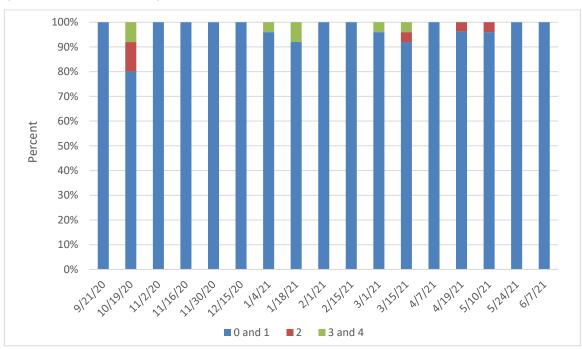


Figure 14: Dakota Russet glucose concentrations for the 2020-2021 storage season compared to Russet Burbank.


Figure 15: Dakota Russet sucrose concentrations for the 2020-2021 storage season compared to Russet Burbank.

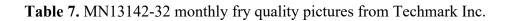
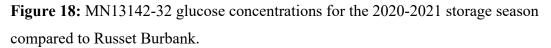
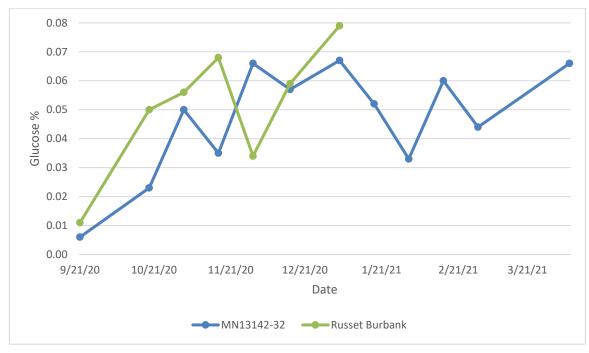
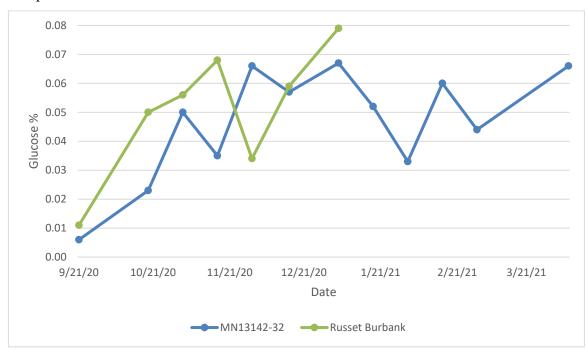


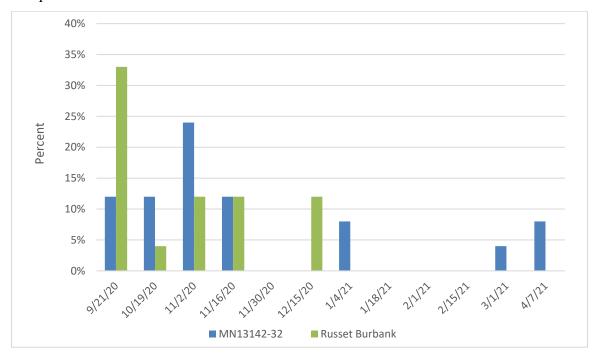
Figure 16: Dakota Russet sugar end percentages for the 2020-2021 storage season compared to Russet Burbank.

Figure 17: Dakota Russet percent fry color for the 2020-2021 storage season. Fry quality is: excellent (Munsell scores 0 and 1), acceptable (Munsell score 2), and unacceptable (Munsell scores 3 and 4).




MN13142-32: This variety was evaluated monthly through April. It had a storage glucose profile that rose variably through January and fluctuated through April (Figure 18). The sucrose concentration followed a generally decreasing trend but remained higher than that of Russet Burbank (Figure 19). Seven samples had sugar ends, including the first four samples (Figure 20). Fry quality was excellent to acceptable. The October 19th sample had the worst fry quality with 44% unacceptable fries, while the December 15th sample had the best fry quality with 76% excellent fries (Figure 21).


9/21		11/30	Image: Base Base Base Base Base Base Base Base
10/19		12/15	
11/2	H 2 20 H 3 120 Provenze rec (P)	1/4	


11/16		1/18	
2/1	Image: A frage in the second secon	3/1	
2/15		4/5	

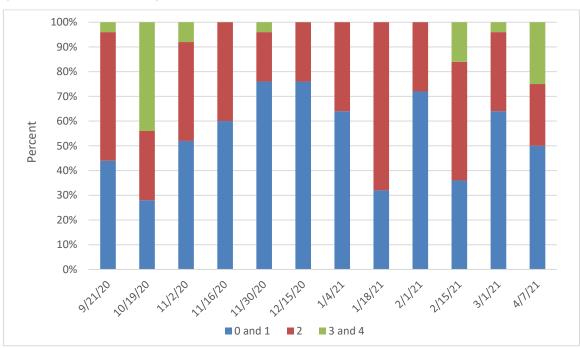
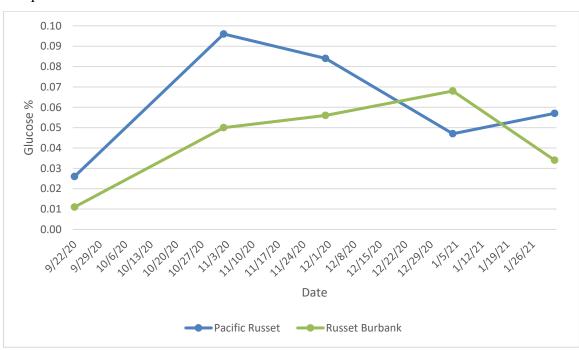
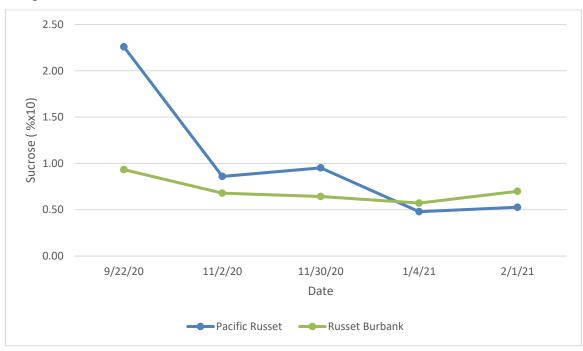

Figure 19: MN13142-32 sucrose concentrations for the 2020-2021 storage season compared to Russet Burbank.

Figure 20: MN13142-32 sugar end percentages for the 2020-2021 storage season compared to Russet Burbank.


Figure 21: MN13142-32 percent fry color for the 2020-2021 storage season. Fry quality is: excellent (Munsell scores 0 and 1), acceptable (Munsell score 2), and unacceptable (Munsell scores 3 and 4).

Pacific Russet: This variety was evaluated monthly through February. Glucose concentrations were higher than those of Russet Burbank in all but one sample (Figure 22). Sucrose concentrations were also higher than those of the check variety in all but the last two samples (Figure 23). Sugar end defects were very high in the variety, with the November sample displaying 52% sugar ends (Figure 24). Fry color was correspondingly marginal to acceptable, with all samples containing less than 60% excellent fries. Each sample contained at least 12% unacceptable fries (Figure 25).


Table 8. Pacific Russet monthly fry quality pictures from Techmark Inc.

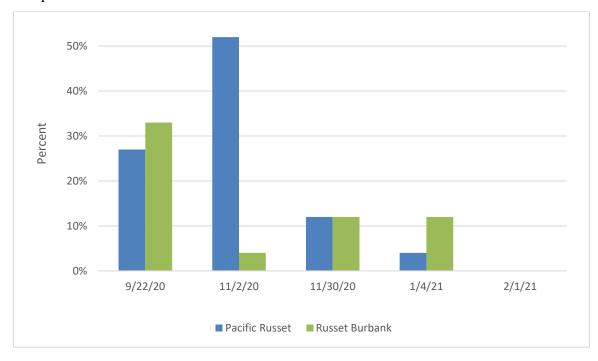
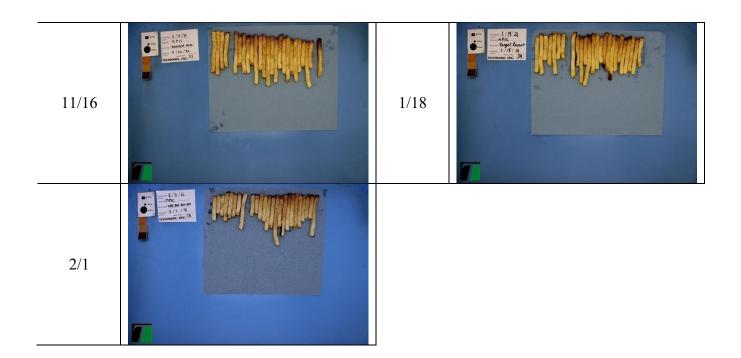
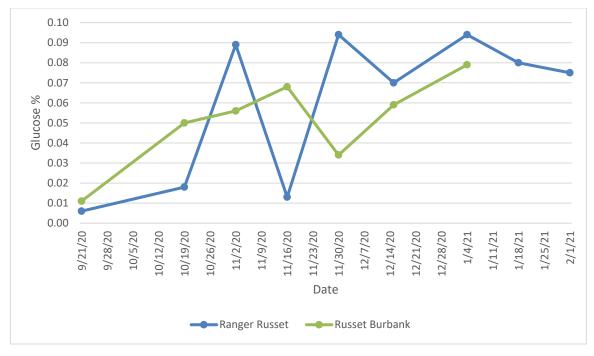

9/21		1/4	
11/2	HUSAR HUSAR HUSAR Transfer Transfer	2/1	
11/30			

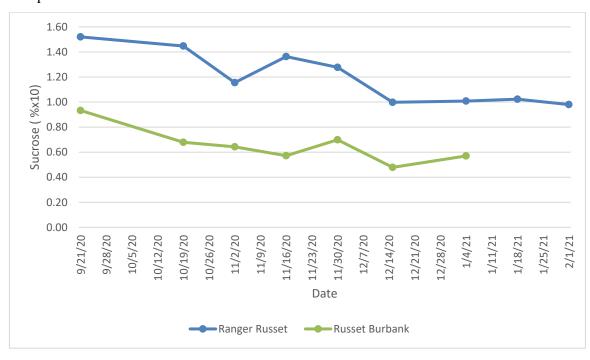
Figure 22: Pacific Russet glucose concentrations for the 2020-2021 storage season compared to Russet Burbank.

Figure 23: Pacific Russet sucrose concentrations for the 2020-2021 storage season compared to Russet Burbank.

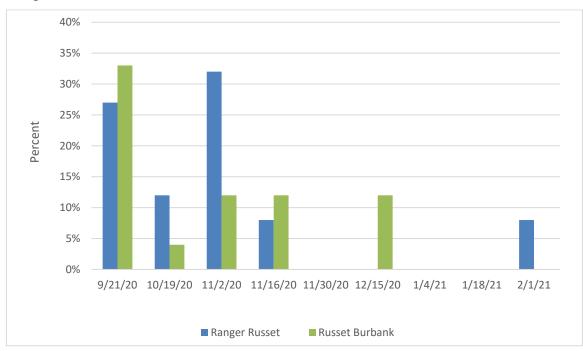
Figure 24: Pacific Russet sugar end percentages for the 2020-2021 storage season compared to Russet Burbank.

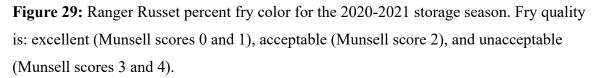

Figure 25: Pacific Russet percent fry color for the 2020-2021 storage season. Fry quality is: excellent (Munsell scores 0 and 1), acceptable (Munsell score 2), and unacceptable (Munsell scores 3 and 4).


Ranger Russet: This variety was evaluated bi-monthly until February. It had the most variable glucose concentration of all varieties with a range between 0.006% and 0.094% (Figure 26). Sucrose was consistently elevated in storage but followed a generally decreasing trend (Figure 27). Sugar ends were present in the first four and final samples, with the November 2nd sample displaying 32% sugar end defects (Figure 28). Fry color was mainly acceptable, with fewer than 50% excellent chips present in all samples (Figure 29).


Table 9. Ranger Russet bi-monthly fry quality pictures from Techmark Inc.

9/21		11/30	I A A / JA I A A / JA TOMATE INC SAL I A A / JA TOMATE INC SAL I A A / JA I A A / JA
10/19		12/15	
11/2	Reference rectors	1/4	


Figure 26: Ranger Russet glucose concentrations for the 2020-2021 storage season compared to Russet Burbank.



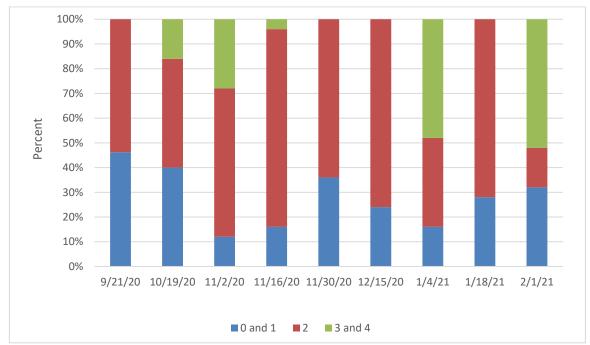
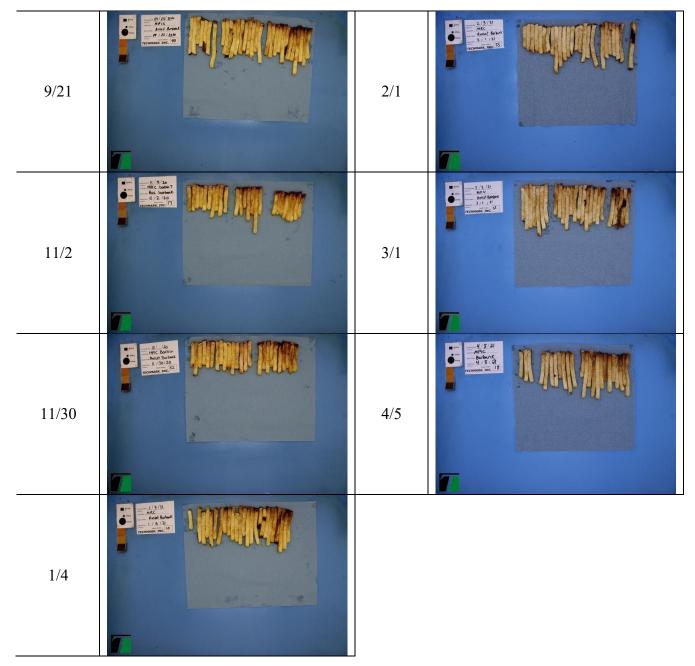
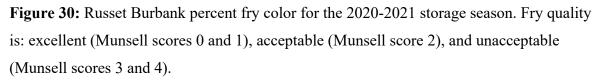


Figure 27: Ranger Russet sucrose concentrations for the 2020-2021 storage season compared to Russet Burbank.

Figure 28: Ranger Russet sugar end percentages for the 2020-2021 storage season compared to Russet Burbank.





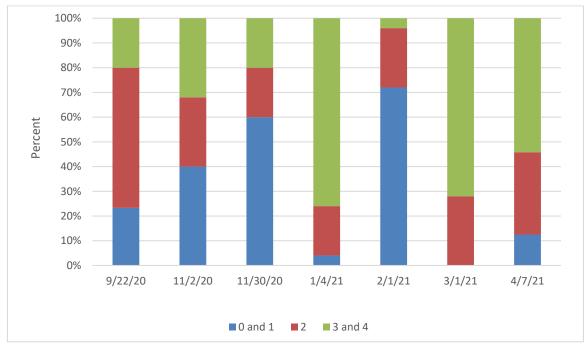
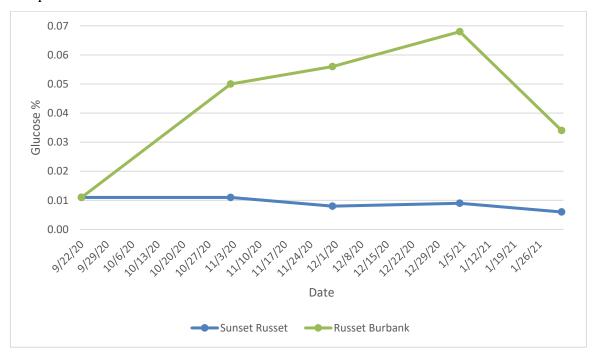

Russet Burbank: This check variety was evaluated monthly until January. See individual varieties for comparisons on sucrose, glucose, and percent sugar defects. Fry color was variable. The February 1st sample had 72% excellent fries and 24% acceptable fries, while the January 4th sample had 76% unacceptable fries and 20% acceptable fries (Figure 30).

Table 10: Russet Burbank monthly fry quality pictures from Techmark Inc.

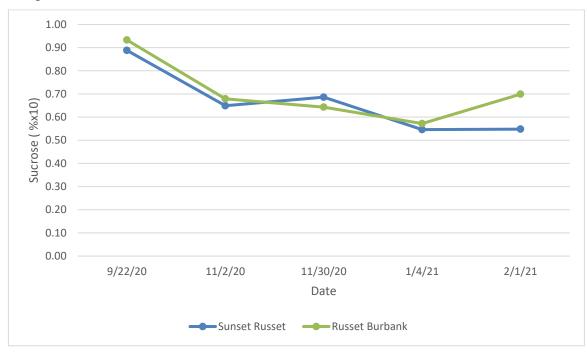
Month

Sunset Russet: This variety was evaluated monthly until February. Glucose concentrations were low and stable during storage, with a range between 0.006% and 0.011% (Figure 31). Sucrose concentrations closely mirrored those of Russet Burbank (Figure 32). Sugar ends were minimal, with three samples displaying the defect, all below 12% (Figure 33). Fry quality was largely excellent, with all samples containing over 60% excellent chips. Two samples contained 17% or less unacceptable chips (Figure 34).


Table 11. Sunset Russet monthly fry quality pictures from Techmark Inc.

 9/21
 1/4
 1/4

 11/2
 11/2
 2/1


 11/2
 11/2
 11/2

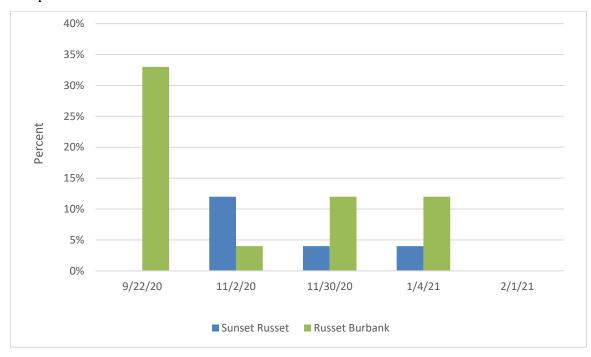

Month

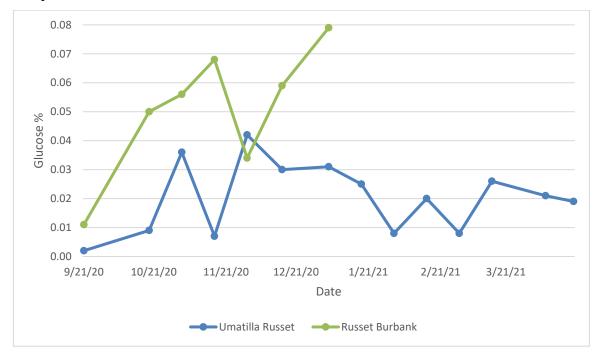
Figure 31: Sunset Russet glucose concentrations for the 2020-2021 storage season compared to Russet Burbank.

Figure 32: Sunset Russet sucrose concentrations for the 2020-2021 storage season compared to Russet Burbank.

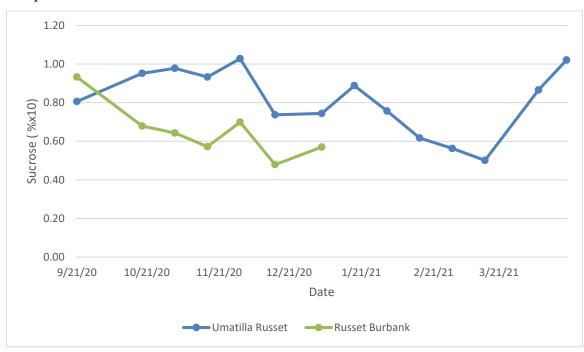
Figure 33: Sunset Russet sugar end percentages for the 2020-2021 storage season compared to Russet Burbank.

Figure 34: Sunset Russet percent fry color for the 2020-2021 storage season. Fry quality is: excellent (Munsell scores 0 and 1), acceptable (Munsell score 2), and unacceptable (Munsell scores 3 and 4).

Umatilla Russet: This variety was evaluated bi-monthly through April. It had a variable glucose concentration, typically below that of Russet Burbank (Figure 35). The storage glucose profile was also inconsistent, with stable concentrations through November, a generally decreasing trend through March, and increasing concentrations in the last two samples (Figure 36). Sugar end defects were minimal, with six samples containing 12% or less sugar ends (Figure 37). Eleven our of the 14 samples had over 60% excellent chips, and seven samples had 23% or less unacceptable chips (Figure 38).


Table 12. Umatilla Russet bi-monthly fry quality pictures from Techmark Inc.

9/21		11/30	HAC Sof los HAC Sof los Laboratorial Televiner The Soft
10/19		12/15	
11/2	HU 9 20 HU 2 20 Prometer free 10 Prometer free 10	1/4	


Month

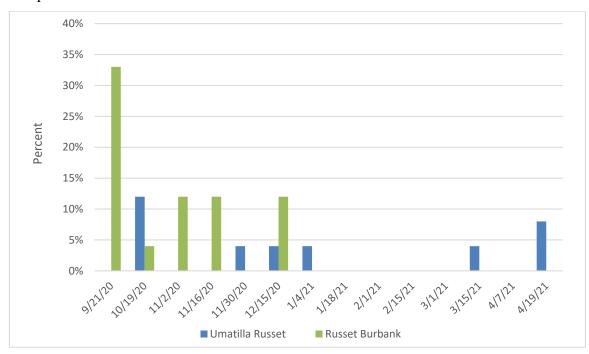

11/16	Image: A (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	1/18	
2/1	Image: Arrow manual row	3/15	
2/15		4/5	
3/1	Image: Arrow and arr Arrow and arrow 4/19		

Figure 35: Umatilla Russet glucose concentrations for the 2020-2021 storage season compared to Russet Burbank.

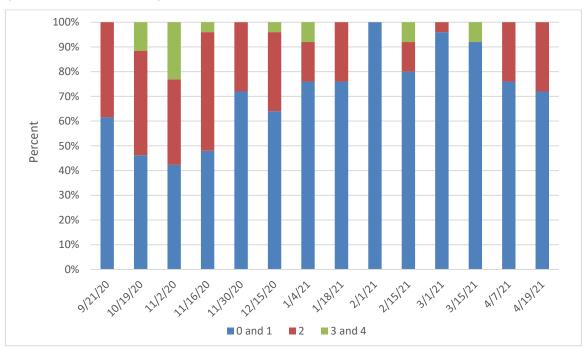

Figure 36: Umatilla Russet sucrose concentrations for the 2020-2021 storage season compared to Russet Burbank.

Figure 37: Umatilla Russet sugar end percentages for the 2020-2021 storage season compared to Russet Burbank.

Figure 38: Umatilla Russet percent fry color for the 2020-2021 storage season. Fry quality is: excellent (Munsell scores 0 and 1), acceptable (Munsell score 2), and unacceptable (Munsell scores 3 and 4).

